

The Design Guide for

Bonding Rubber and Thermoplastic Elastomers

		Eu	Gd	Тb	Ðу	Ho		

E=MC²

Volume 2 2/05

Table Of Contents

Introduction	2
Description Of Adhesives	3
Cyanoacrylate Adhesives	3
Epoxy Adhesives	4
Hot Melt Adhesives	5
Light Curing Acrylic Adhesives	6
Polyurethane Adhesives	7
Silicone Adhesives	8
No-Mix and Static Mix Acrylic Adhesives	9
 Why Bond Elastomers With Loctite[®] Brand Adhesives? 	10
How To Use The Rubber and TPE Bonding Chapters	11
How to Use The Adhesive Shear Strength Table	12
Rubber and TPE Bonding Chapters	14
Butyl Rubber (IIR)	14
 Chlorosulfonated Polyethylene (CSM) 	16
Copolyester TPE	18
 Epichlorohydrin Rubber (CO, ECO, GCO, GECO) 	20
Ethylene Acrylic Rubber (EEA)	22
 Ethylene Propylene Rubber (EPM, EPDM) 	24
Ethylene-Vinyl Acetate Copolymer (EVA)	26
Fluorocarbon Rubber (FKM)	28
Fluorosilicone Rubber (FVMQ)	30
 Halogenated Butyl Rubber (BIIR, CIIR) 	32
 Hydrogenated Nitrile Rubber (H-NBR, HSN) 	34
Melt Processible Rubber (MPR)	36
Natural Rubber (NR)	38
Neoprene Rubber (CR)	40
Nitrile Rubber (NBR, XNBR)	42
Polyether Block Amide (PEBA)	44
Polyacrylate Rubber (ACM)	46
Polyisoprene Rubber (IR)	48
Polyolefin Elastomers (POE)	50
 Poly(propylene oxide) Rubber (GPO) 	52
Polysulfide Rubber (TM)	54
Silicone-Modified EPDM	56
 Silicone Rubber (MQ, VMQ, PMQ, PVMQ) 	58
Styrene-Butadiene Rubber (SBR)	60
Styrenic TPE (S-B-S, S-I-S, S-EB-S)	62
 Thermoplastic Vulcanizates (TPV) 	64
Adhesive Joint Design	66
Test Methodology	69
Index of Trade Names	73
Acknowledgements	76
Disclaimer	76

The Problem

From the discovery of natural rubber to the development of modern day thermoplastic elastomers (TPEs), elastomeric materials have found a wide variety of uses that make them an integral part of an industrial society. In a diverse variety of products ranging from automobile tires to lifesaving implantable medical devices, their unique ability to be greatly deformed and return to their original shape fills an important niche in the world of engineering materials. It would be difficult to identify a manufacturing process which does not use elastomers in one form or another.

Elastomeric materials have achieved widespread acceptance due to the virtually limitless combinations of elastomer types, fillers and additives which can be compounded at relatively low costs and processed by a wide variety of methods. This gives end-users the ability to develop specific formulations with properties tailored to their needs. By properly selecting the base elastomer, additives and fillers, as well as the appropriate cure method, the physical, chemical and thermal properties of an elastomer can be made to meet or exceed the performance requirements of almost any application requiring elastomeric properties.

However, while the limitless variety of elastomers is an invaluable asset to a designer selecting an elastomer, it is the designer's biggest limitation when selecting an adhesive. The countless adhesives available, coupled with the virtually limitless elastomer formulations possible, make it highly unlikely that there will be bond strength data for the specific adhesive/elastomer combination in the designer's application.

The Solution

Bond Strength Information

This guide is designed to indicate the bondability of the 26 most commonly used families of elastomers. This was accomplished using two approaches. The majority of elastomers which were evaluated were compounded specifically to determine the effect different additives and fillers had on the bondability of these materials. Once the designer identifies the elastomer formulations containing the same fillers and additives that are desired to be bonded, the adhesives can then be pinpointed which performed best on those materials. Although this will probably not tell the designer the exact bond strength that will be achieved by that specific adhesive on that specific material, it will give the designer a general idea of what bond strengths can be achieved. For the other elastomers, bond strength testing was performed on commercially available grades which were selected to represent each major category of the elastomer based on the major end-use applications, and/or the chemical structure of that elastomer.

Adhesive Information

An adhesive cannot be selected for an application solely on the basis of bond strength information. Other factors such as the cure speed, environmental resistance, thermal resistance, and suitability for automation of an adhesive will play a critical role in determining the best adhesive for a specific application. To give a designer insight into these design parameters, an in-depth description of the seven adhesive types, namely cyanoacrylates, no-mix/static mix acrylics, hot melts, epoxies, polyurethanes, silicones and light curing acrylics, has been included in this guide. These adhesive sections contain a general description of each adhesive, a detailed discussion of the chemical structure and cure mechanism of each adhesive, and the benefits and limitations of using each adhesive.

Elastomer Information

Manufacturers may have the flexibility to select the elastomers which are best suited for their applications in terms of performance and bondability. To aid the designer, an in-depth discussion of each of the elastomer types is included. Information covered includes a general description of the elastomer and its properties, as well as a list of trade names, suppliers and typical applications.

Cure Process Effects

For thermoset rubbers, the ultimate bond strength might be improved by stopping the vulcanization process before all cross-linking sites available have been consumed. Stopping the vulcanization process before the rubber has achieved its ultimate modulus will leave unreacted cross-linking sites on the rubber backbone and form a polymer with a lower cross-link density. As a result, the unreacted cross-linking sites may improve bond strength by reacting with the adhesive. In addition, the lower cross-link density of the rubber may facilitate adhesive penetration of the rubber polymer network. To investigate this phenomenon, each of the thermoset rubbers, except the PEBA, was cured to 80% of their ultimate modulus (noted as T80 cure in the adhesive shear strength tables), and tested for bond strength. These results were then compared with those of the control for statistically significant differences.

Bond Design Information

Finally, a manufacturer may have a design in which he desires to incorporate an adhesively bonded joint. To effectively design that joint, the designer must know which parameters are critical to the bond strengths achieved by a bonded joint and the effect that changing these parameters will have. A bond design section which reviews the basics of designing an adhesively bonded single lap joint is included in an attempt to give the designer insight into this area. Although most "real world" bond geometries are more complex than single lap joints, this information can be extrapolated as a general indicator of the effects caused by changing bond geometries.

Cyanoacrylate Adhesives

General Description

Cyanoacrylates are one-part, room-temperature-curing adhesives that are available in viscosities ranging from water-thin liquids to thixotropic gels. When pressed into a thin film between two surfaces, cyanoacrylates cure rapidly to form rigid thermoplastics with excellent adhesion to most substrates.

One of the benefits cyanoacrylates offer is the availability of a wide variety of specialty formulations with properties tailored to meet particularly challenging applications. For example, rubber-toughened cyanoacrylates offer high peel strength and impact resistance to complement the high shear and tensile strengths characteristic of cyanoacrylates. Thermally resistant cyanoacrylates are available which offer excellent bond strength retention after exposure to temperatures as high as 250°F for thousands of hours. Moreover, "Surface-insensitive" cyanoacrylates offer rapid fixture times and cure speeds on acidic surfaces, such as wood or dichromated metals, which could slow the cure of a cyanoacrylate. In some cases, the use of a general-purpose cyanoacrylate adhesive was hampered by the appearance of a white haze around the bond line. This phenomenon is known as "blooming" or "frosting" and occurs when cyanoacrylate monomer volatizes, reacts with moisture in the air, and settles on the part. To eliminate this problem, "Low Odor/Low Bloom" cyanoacrylates were developed. They have a lower vapor pressure than standard cyanoacrylates and therefore are less likely to volatize. Ultraviolet curing (UV) cyanoacrylates are the latest advancement in cyanoacrylate technology. UV cyanoacrylates utilize proprietary photoinitiators to allow cyanoacrylates to surface cure in seconds when exposed to ultraviolet or visible light of the appropriate wavelength. Light Cure Technology makes cyanoacrylates cure even faster, overcome blooming, and limiting or eliminating stress cracking. While advances in cyanoacrylate formulating technology have played a key role in offering additional benefits to the end user, there have also been important developments in cyanoacrylate primer and accelerator technology.

Accelerators speed the cure of cyanoacrylate adhesives and are primarily used to reduce cure/fixture times, to cure fillets on bond lines and/or excess adhesive. Accelerators consist of an active ingredient dispersed in a solvent. The accelerator is typically applied to a substrate surface prior to the application of the adhesive. Once the carrier solvent has evaporated, the cyanoacrylate can immediately be applied and its cure initiated by the active species that the accelerator has left behind. Depending on the particular solvent and active species present in the accelerator, the solvent can require 10 to 60 seconds to evaporate, and the active species can have an on-part life ranging from 1 minute to 72 hours. Accelerator can also be sprayed over a drop of free cyanoacrylate to rapidly cure it. This technique has been widely used for wire tacking in the electronics industry.

Another benefit offered by cyanoacrylates is the availability of primers which enable them to form strong bonds with polyolefins and other difficult-to-bond plastics such as fluoropolymers and acetal resins. Like the accelerators, polyolefin primers consist of an active ingredient dispersed in a solvent. Once the carrier solvent has evaporated, the surface is immediately ready for bonding, and the primer will have an on-part life ranging from minutes to hours. Depending on the plastic, bond strengths up to 20 times the unprimed bond strength can be achieved.

Chemistry

Cyanoacrylate adhesives are cyanoacrylate esters, of which methyl and ethyl cyanoacrylates are the most common. Cyanoacrylates undergo anionic polymerization in the presence of a weak base, such as water, and are stabilized through the addition of a weak acid. When the adhesive contacts a surface, the water present on the surface neutralizes the acidic stabilizer in the adhesive, resulting in the rapid polymerization of the cyanoacrylate.

Advantages

- One-part system
- Solvent-free
- Rapid room temperature cure
- Excellent adhesion to many substrates
- · Easy to dispense in automated systems
- Wide range of viscosities available
- Excellent bond strength in shear and tensile mode
- Primers available for polyolefins and difficult to bond plastics
- UV/Visible cure formulas available

- Poor peel strength
- Limited gap cure
- Poor durability on glass
- Poor solvent resistance
- Low temperature resistance
- Bonds skin rapidly
- May stress crack some plastics

Epoxy Adhesives

General Description

Epoxy adhesives are typically two-part systems (resin and hardener) which cure at room temperature, although one-part pre-mixes which utilize a heat cure are also available, as are UV curable one and two component epoxies. The two components react stoichiometrically, so maintaining proper mix ratio is important to ensure consistent performance. Upon mixing, the curing reaction of the epoxy can release a great deal of heat and result in a significant temperature rise in the adhesive. In some applications, such as deep section potting, this heat rise can be sufficient to char the adhesive. Upon cure, epoxies form tough, rigid thermoset polymers with high adhesion to a wide variety of substrates and good environmental resistance. The viscosities of epoxy adhesives can range from a few thousand centipoise to thixotropic pastes.

The wide variety of chemical species that can react with the epoxide end group and the inherent stability of two-part adhesive systems lead to a wide variety of epoxy formulations available to the end-user. The performance properties of epoxies can be tailored to specific needs through a wide variety of techniques. Epoxy adhesives are typically rigid and formulating techniques must be employed to produce flexible epoxies. These techniques include the use of nonreactive plasticizers, the incorporation of rubber into the epoxy and the use of epoxy resins with flexible backbones. The properties of epoxy adhesives are also varied through the use of fillers. For example, guartz fillers can impart improved impact resistance, ceramic fillers can offer improved abrasion resistance, and silver can be used to produce epoxies which are electrically conductive.

Chemistry

Epoxy adhesives polymerize to form thermoset polymers when covalent bonds between the epoxy resin and the hardener are formed through the reaction of the epoxide ring with the ring-opening species on the hardener. Amines, amides, mercaptans, and anhydrides are some of the types of hardener that are commonly used. Catalysts can be employed to accelerate the reaction rate between the epoxy resin and hardener. In addition, heat will also accelerate the reaction. If heat is used to accelerate the cure of the epoxy, the increase in temperature can result in a drop of viscosity and an increased flow of the adhesive. In addition, curing the epoxy at a higher temperature will usually result in a stiffer material with a higher crosslink density and glass transition temperature.

Advantages

- High cohesive strength
- High adhesion to a wide variety of substrates
- Good toughness
- Cure can be accelerated with heat
- Excellent depth of cure
- Good environmental resistance

- Two-part systems require mixing
- One-part systems require heat cure
- Long cure and fixture times
- Limited pot life and work time
- · Exotherm may be problematic

Hot Melt Adhesives

General Description

Hot melt adhesives are one-part solvent-free thermoplastic adhesives that are solid at room temperature and a low to medium viscosity (750-10,000 cP) adhesive at dispense temperatures (typically greater than 195°C). After dispense, hot melt adhesives rapidly cool to form a strong bond. In the cured or cooled state, hot melt adhesives can vary in physical properties from soft rubbery and very tacky to hard and rigid. Hot melts have excellent long term durability and resistance to moisture, chemicals, oils, and temperature extremes.

The latest advancement in hot melt technology is the reactive polyurethane adhesive (PUR). PURs initially behave like standard hot melts. That is, heat is added to the soften the urethane prepolymer and it is dispensed hot. Once the PUR cools, it reacts with moisture to cross-link into a tough thermoset polyurethane adhesive that cannot be remelted by adding heat.

Chemistry

Chemistries include ethylene vinyl acetate (EVA), polyolefin and polyamide based hot melts. EVA hot melts are the "original" hot melt and are thought of as the low cost, low performance hot melt. EVAs provide good adhesion to steel aluminum, rubber, and many plastics. Typical EVA hot melt applications include box and carton sealing. EVA hot melts can be formulated to carry a FDA approval for use in food packaging. Out of all available hot melts, EVAs typically have the poorest high temperature resistance.

Polyamide hot melts are a higher cost, higher performing adhesive with excellent high temperature resistance (up to 300°F). Specialty formulations are available that carry a UL-94V-0 rating (flame resistance). Polyamide hot melts have a tendency to absorb moisture from the air and require special packaging and storage considerations. Polyolefin hot melts are specially formulated for adhesion to polyolefin (polypropylene, polyethylene, etc.) plastics. Compared to other chemistries, they have longer open times and they have excellent resistance against polar solvents.

Reactive polyurethanes are supplied as an urethane prepolymer, behaving much like a standard hot melt until it cools. Once the PUR cools, it reacts with moisture over time (a few days) to cross-link into a tough thermoset polyurethane.

Advantages

- One-part, solvent-free
- Fast fixturing
- High adhesion to plastics
- Wide variety of formulations available
- Low volumetric cost

- Hot dispense point
- Operator safety Hot dispense point
- Poor adhesion on metals
- Cools quickly
- Equipment is required
- Thermoplastic parts may deform
- Charring in reservoir
- Moisture sensitivity

Light Curing Acrylic Adhesives

General Description

Light curing acrylic adhesives are supplied as one-part, solvent-free liquids with viscosities ranging from 50 cP to thixotropic gels. Upon exposure to ultraviolet or visible light of the proper intensity and spectral output, these adhesives cure rapidly to form thermoset polymers with excellent adhesion to a wide variety of substrates. The cure times of light curing acrylic adhesives are dependent on many parameters, however, cure times of 2 to 60 seconds are typical and cure depths in excess of 0.5" (13 mm) are possible. Formulations of light curing acrylic adhesives are available which vary in cured properties from very rigid, glassy materials to soft, flexible elastomers.

Light curing acrylic adhesives cure rapidly on demand, which minimizes work in progress and offers virtually unlimited repositioning time. In addition, the wide range of viscosities available facilitates the selection of a product for automated dispensing. These qualities make light curing acrylics ideally suited for automated bonding processes.

Chemistry

Light curing acrylic adhesives are composed of a blend of monomers, oligomers, and polymers containing the acrylate functionality to which a photoinitiator is added. Upon exposure to light of the proper intensity and spectral output, the photoinitiator decomposes to yield free radicals. The free radicals then initiate polymerization of the adhesive through the acrylate groups to yield a thermoset polymer. When the adhesive is cured in contact with air, the free radicals created by the decomposition of the photoinitiator can be scavenged by oxygen prior to initiating polymerization. This can lead to incomplete cure of the adhesive at the adhesive/oxygen interface, yielding a tacky surface. To minimize the possibility of forming a tacky surface, the irradiance of light reaching the adhesive can be increased, the spectral output of the light source can be matched to the absorbance spectrum of the photoinitiator, and/or the adhesive can be covered with an inert gas blanket during cure.

Advantages

- Cure on demand
- Good environmental resistance
- Wide range of viscosities available
- Solvent-free
- Good gap filling
- One part
- Dispensing is easily automated
- Clear bond lines
- Rapid fixture and complete cure
- Wide range of physical properties
- UV/Visible cure systems available
- Fluorescent dyes can be added to ease inspection/detection

Disadvantages

- · Light must be able to reach bond line
- Oxygen can inhibit cure
- Equipment expense for light source
- Ozone created by high intensity light source must be vented

The Electromagnetic Spectrum

Polyurethane Adhesives

General Description

Polyurethane adhesives are supplied as one and twopart systems which range in viscosity from self-leveling liquids to non-slumping pastes. They cure to form thermoset polymers with good solvent and chemical resistance. They are extremely versatile and can range in cured form from extremely soft elastomers to rigid, extremely hard plastics. Polyurethanes offer a good blend of cohesive strength and flexibility which makes them very tough, durable adhesives.

Polyurethanes bond well to most unconditioned substrates, but may require the use of solvent-based primers to achieve high bond strengths. They offer good toughness at low temperatures, but typically degrade in strength after long-term exposure over 302°F (150°C). Since the cure of one-part, moisture-curing polyurethanes is dependent on moisture diffusing through the polymer, the maximum depth of cure that can be achieved in a reasonable time is limited at approximately 0.375"(9.5 mm). Two-part systems, on the other hand, offer unlimited depth of cure.

Chemistry

One-part polyurethane adhesives can react with moisture to polymerize. Another cure mechanism involves the evolution of species that inhibit the cure of the polyurethane. In either case, cure is dependent on a chemical species diffusing through the polyurethane matrix, so the depth of cure is limited. Two-part polyurethanes, which generally cure through the reaction of an isocyanate and a polyol, avoid this limitation and offer superior depth of cure. In either case, the polyurethane polymer forms rigid and soft domains that give the polymer its balance of flexibility and high strength.

Advantages

- Extremely tough
- Good resistance to solvents
- High cohesive strength
- Good impact resistance
- Good abrasion resistance

- Limited depth of cure for one-part polyurethanes
- Mixing required for two-part polyurethanes
- Primer may be needed for adhesion to some substrates
- Limited high temperature use

Silicone Adhesives

General Description

Silicone adhesives are typically supplied as one-part systems which range in viscosity from self-leveling liquids to non-slumping pastes. They cure to soft, thermoset elastomers with excellent property retention over a wide temperature range. Silicones have good adhesion to many substrates, but are limited in their utility as structural adhesives by their low cohesive strength.

Silicone adhesives are typically cured via reaction with ambient humidity, although formulations are also available which can be cured by exposure to ultraviolet light of the proper irradiance and spectral output. Since the cure of moisture curing silicones is dependent on moisture diffusing through the silicone matrix, the cure rate is strongly affected by the ambient relative humidity. Moisture curing silicones have a maximum depth of cure which is limited to 0.375 - 0.500". At 50% RH, moisture cure silicones will cure to a tack free surface in 5-60 minutes depending on the type used. Complete cure through thick sections of silicone can take up to 72 hours. It should be noted that adhesive strength may continue to develop for 1-2 weeks after the silicone has been applied. This occurs because the reaction between the reactive groups on the silicone polymer and the reactive groups on the substrate surface is slower than the cross-linking reaction of the silicone groups with themselves.

Moisture curing silicones are categorized by the byproduct given off as they cure with moisture. For example, acetoxy cure silicones give off acetic acid. Alkoxy cure silicones give off alcohols, typically methanol or ethanol, and oxime curing silicones evolve oxime. Acetoxy cure silicones are known for their ability to cure rapidly and develop good adhesion to many substrates. Their largest limitation is the potential for the by-product acetic acid to promote corrosion. Alkoxy cure silicones, on the other hand, do not have this limitation because the alcohol by-products are noncorrosive. This makes them well suited for electronic and medical applications where the acetic acid could be a problem. Unfortunately, alkoxy silicones typically have lower adhesion and take longer to cure than acetoxy silicones. Oxime evolving silicones offer cure speeds and adhesion which rivals, and in some cases surpasses, that of acetoxy cure silicones. However, the oxime they evolve will not corrode ferric substrates, although it can stain copper or brass.

Consequently, oxime silicones have found widespread use in automotive gasketing applications. The chief limitation of all moisture curing silicones is the difficulty associated with accelerating the cure rate. This concern was addressed through the development of UV cure silicones.

Ultraviolet light curing silicones generally also have a secondary moisture cure mechanism to insure that any silicone which is not irradiated with ultraviolet light will still cure. Upon exposure to ultraviolet light of the proper irradiance and intensity, they will form a tack free surface and cure to a polymer with up to 80% of its ultimate physical strength in less than a minute. Initial adhesion can be good, but because ultimate bond strength is dependent on the moisture cure portion of the silicone, full bond strength can take 1-2 weeks to develop. The adhesive strength achieved by a UV/moisture cure silicone is typically a function of the type of moisture cure used. Silicones with a secondary acetoxy cure show good bond strength while those with a secondary alkoxy cure are lower.

Chemistry

Silicone formulations are available which can be cured through moisture, heat, mixing two components and exposure to ultraviolet light. The silicones used for adhesives are typically the one-part moisture curing and UV curing silicones. All silicones have a chemical backbone made up of silicone to oxygen bonds, known as siloxane bonds. It is the high energy of this bond that gives silicones their unique high temperature performance properties.

Advantages

- · One-part systems available
- Solvent free
- Room temperature cure
- Excellent adhesion to many substrates
- Extremely flexible
- UV Curing formulations available

- Poor cohesive strength
- · Moisture cure systems have limited depth of cure
- Swelled by non-polar solvents

No-Mix and Static Mix Acrylic Adhesives

General Description

Acrylic adhesives consist of a resin and an activator/ hardener. The resin component is a solvent-free, highviscosity liquid, typically in the range of 10,000 to 100,000 cP, while the activator component can be a solvent dispersion of the cure catalyst (no-mix) or a high viscosity mix of the cure catalyst and performance additives.

If the carrier solvent present in the activator solvent dispersion is undesirable, the pure catalyst is also available as a solvent-free activator. However, when using a solvent-free activator, the amount of activator applied must be tightly controlled, as excessive activator will detrimentally affect the performance of the adhesive. With static-mix acrylics, the viscosity of the resin and hardener are formulated to be very similar in order to ensure good mixing through the static mix tip. A primer may also be incorporated into the resin or hardener in order to enhance the bond strength on some substrates.

The resin base of no-mix acrylic adhesives can also be heat cured. A typical heat cure cycle is ten minutes at 300°F (149°C). Heat curing normally offers higher bond strengths and shorter cure times. However, heating the adhesive lowers the resin's viscosity and may result in some adhesive flow out of large gaps. In some instances, it is desired to use a combination of these two cure methods, fixturing the assembly with activator prior to heat cure.

Application Method

When an activator is used, the adhesive is cured in the following manner:

- ✓ The resin is applied to one of the substrate surfaces.
- The activator is typically applied to the other surface.
- ✓ The activator's carrier solvent is allowed to flash off.
- ✓ The two surfaces are mated together.
- The catalyst from the activator then initiates the polymerization of the resin.

Typically, these systems develop fixture strength in two minutes and full strength in 4-24 hours. The activator serves only as a catalyst for the polymerization of the resin, so when using an activator, the ratio of activator to resin is not critical. However, this is not the case for solventless activators, because the activator is so concentrated that excess activator can prevent the adhesive from forming an intimate bond with the substrate. Since polymerization is initiated at the interface between the activator and resin, the cure depth is limited. Typically, the maximum cure-throughdepth is 0.30" (0.76 mm) from this interface.

Static-mix acrylic adhesives are dispersed using hand held applicators and the appropriate static-mix tip (typically 24 elements). Static-mix acrylics offer unlimited depth of cure but due to the exothermic nature of the reaction, caution must be exercised. The exotherm may deform temperature sensitive substrates or cause "read-through" on the opposite surface.

Chemistry

The resin base consists of an elastomer dissolved in acrylic monomers. Peroxides are then blended in to provide the resin with a source of free radicals. The elastomers form a rubbery phase which gives the adhesive its toughness, and the acrylic monomers form the thermoset polymer matrix which gives the adhesive its environmental resistance and strength.

The type of cure catalyst used in the activator will vary depending on the cure chemistry of the adhesive. In no-mix acrylics, the catalyst(s) are often diluted in a solvent, although in some cases, they are supplied in solventless formulations. In static-mix acrylics the catalyst is blended in with a portion of the elastomer in order to match the viscosity of the resin. Upon contact of the cure catalyst(s) with the resin base, the peroxide in the resin base decomposes to yield free radicals. These radicals then initiate polymerization through the acrylate groups on the monomer in the resin base.

Advantages

- No mixing required (no-mix acrylics only)
- Good environmental resistance
- High peel and impact strength
- Bonds to lightly contaminated surfaces
- Fast fixture and cure
- Room temperature cure
- Good adhesion to many substrates
- Cure can be accelerated with heat

- Higher viscosity systems can make automated dispensing difficult
- Activator may contain solvents (no-mix acrylics only)
- Unpleasant odor
- Limited cure-through depth (no-mix acrylics only)
- High exotherm (static-mix acrylics)
- Short worklife of some formulations (static-mix acrylics)

Why Bond Elastomers With Loctite[®] Brand Adhesives?

Advantages Over Other Assembly Methods

Adhesives offer an array of benefits to the manufacturer who needs to join elastomeric substrates to other substrates in their manufacturing process. These benefits are best understood by comparing adhesive joining processes with the other options a manufacturing engineer can consider.

Advantages Versus Mechanical Fasteners

Mechanical fasteners are quick and easy to use, but have a number of significant drawbacks.

- They create stresses in the elastomer, which may lead to distortion or ripping of the part; adhesives do not.
- There are extra components which must be purchased and inventoried. Adhesives require no extra components.
- They require altering the design of the product to include bosses and holes. Adhesives require no special features.
- Their appearance often interferes with the styling of the product. Adhesives are invisible inside a bonded joint.
- They concentrate all of the holding power at the fastener location, causing the applied load to be carried by a small area of elastomer. Adhesives spread the load evenly over the entire joint area.

Advantages Versus Ultrasonic Welding

Ultrasonic welding can be an excellent method for certain types of assemblies. There are, however, a number of factors which limit its usefulness.

- The dampening characteristics of most elastomers can make them poor candidates for ultrasonic welding. Adhesives are not limited in this fashion.
- Ultrasonic welding is not usable for thermoset rubbers. Adhesives are.
- Joining of elastomers to metal, glass, or other materials is not feasible in most cases. Adhesives do this easily.

- The design of joints is restricted to geometries which are favorable to the process. Ideally, they should have a small, uniform contact area to concentrate the ultrasonic energy. Adhesives can accommodate irregular bond lines.
- The capability of joining different thermoplastic elastomers in the same assembly is limited to those which are chemically compatible and have similar melting points. Adhesives are not restricted in this way.
- Ultrasonic welding requires investment in machinery as well as special tooling for each part. Adhesives require no machinery or tooling.

Advantages Versus Solvent Welding

Solvent welding can be a useful, low-cost method of bonding elastomers. However, its usefulness is limited by a number of disadvantages.

- Solvent welding cannot be used with dissimilar materials such as metals or glass. Adhesives do the job.
- Solvents will not work with thermoset rubbers. Adhesives will.
- Solvents are more likely to cause stress cracking than are adhesives.
- The time between application of the solvent and joining the parts is critical. The joints are weak if too much solvent remains in the bond area or if too much solvent has flashed off prior to assembly. Adhesives have a much less critical open time.
- Solvent cementing is not capable of joining parts with significant gaps between them. Adhesives tolerate much larger gaps.

How To Use The Bonding Chapters

Trade Names

Lists common suppliers of each elastomer and the trade names of their products.

Typical Applications

Lists common markets where the elastomer is used and specific applications.

General Description

Provides information concerning the chemical structure, types available and cure method used (if appropriate).

Relative Adhesive Performance

Provides relative ranking of bond strengths achieved with adhesives tested.

General Properties

Describes the key characteristics of each elastomer.

Effects of Formulation and Processing

Highlights formulation or elastomer processing changes which had a significant effect on adhesive performance.

G Surface Treatments

Summarizes the effect of Loctite[®] 770[™] Prism[®] Primer on cyanoacrylate adhesive performance.

Polysulfide Rubber

thermoset rubber

A Trade Names M • LP Mc • Thiokol Mc

Manufacturer Morton Thiokol Morton Thiokol

Iviorton Thiok

General Description
The key factor that distinguishes polysulfide rubbers from other rubbers is the high sulfur content of the polymer backbone. This results in a very flexible, virtually impermeable rubber. Polysulfide elastomers are produced by the condensation reaction of an organic dihalide with sodium tetrasulfide. Examples of organic dihalide with sodium tetrasulfide. Examples of organic dihalide sused include ethylene dichloride and di-2-chloroethyl ether. Commercial grades vary in sulfur content form 37 to 84%: the sulfur content of the resulting rubber being dependent on the base monomer selected. In addition to the performance benefits offered by the high sulfur content of the backbone, the various reactive sites on the polymer backbone facilitate cross-linking by a wide variety of methods. Generally, a metal oxide or peroxide is used to cross-link the terminal thiol groups, although terminal chlorine and hydroxide groups can also be used. Polysulfide polymers are available in viscosities ranging from pourable liquids to millable gum stock. The strong odor of polysulfides, coupled with the need to peptize some of the gum rubber stocks, can make them difficult to process.

E General Properties

The key performance benefits of polysulfide elastomers are their outstanding chemical resistance and virtual impermeability to most gases, hydrocarbon solvents and moisture. This, coupled with their high flexibility and long-term resistance to both polar and non-polar solvents, makes them especially well suited for sealing applications that require exceptional barrier and resistance properties. Other performance characteristics include good performance at low temperatures and good resistance to UV and ozone. Polysulfide elastomers do not have very good compression set resistance and have fair physical properties. The limited physical properties can be addressed by compounding them with other rubbers, such as polychloroprene. Polysulfide rubber has a recommended service temperature of approximately -40 to 250°F (-40 to -121°C).

_	
B Typical App	lications
Aerospace	Propellant binders, gas bladders, sealants, valves
 Automotive 	Gaskets, rubber washers
Construction	Building caulk, window glazing
D Relative Ad	hesive Performance
• High	Methyl CA - Loctite® 496 [™] Super Bonder® Instant Adhesive Surface Insensitive CA - Loctite® 401™ Prism® Instant Adhesive Primer - Loctite® 401™ Prism® Instant Adhesive with Loctite® 770™ Prism® Primer Rubber Toughened CA - Loctite® 480™ Prism® Instant Adhesive Rubber Toughened CA - Loctite® 4204™ Prism® Instant Adhesive Light Curing Acrylic - Loctite® 3105™ Light Cure Adhesive
Medium	Oxime Silicone - Loctite [®] 5900 [®] Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite [®] 330 [™] Depend [®] Adhesive
• Low	Acetoxy Silicone - Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant
Effects of Fo	ormulation and Processing
Additives	Carbon Black - Increase Clay - Increase Silica - Increase Aromatic Oil - Decrease Antistatic - Increase
• T ₈₀ Cure	Increase
G Surface Trea • Loctite [®] 770™	<mark>atments</mark> Prism® Primer – No Trend Apparent

54

The Loctite[®] Design Guide for Bonding Rubbers and TPEs, Volume 2

How To Use The Adhesive Shear Strength Table

A Control

The control is an unfilled elastomer that was used as the base resin for all compounded formulations. It is listed at the top of the table and is indicated as the "control". Each formulation of elastomer was produced by compounding the unfilled elastomer with a single additive or filler. That formulation was then compared to the control to determine statistically significant effects within 95% confidence limits. In some cases, a change in the process or the chemical composition was evaluated. In these cases, that specific formulation may not have been compounded using the control elastomers but was compared to the control to determine the effect of the change.

B Elastomer Description

The elastomer formulations were selected in two ways. For five of the twenty-five elastomers evaluated, commercially available grades were evaluated which were selected to represent each of the major categories of that elastomer. The twenty remaining elastomers were specifically compounded for the purpose of determining the effect of individual additives and fillers on the bondability of that material.

Commercially Available Grades

If commercially available grades were evaluated, then the specific grades which were tested were listed in the left-hand column of this table.

Specialty Formulations

If special formulations were compounded, then the additive, filler, processing change or change in chemical structure was indicated, as well as the specific concentration and product used, in the left-hand column of this table.

Shading

When the cell is shaded grey, the addition of the indicated additive or filler, the processing change or the change in the chemical makeup of the polymer resulted in a statistically significant increase in bondability when compared to the control. A statistically significant decrease is denoted by red shading. If there is a change in the failure mode, the cell is also shaded accordingly.

Gingle Line

A single line in the table indicates that the elastomer evaluated below the line was formulated from a control and compared back to that control to determine the effect of an additive, filler, processing change or change in chemistry. To determine the control, move up the table from the single line until a row has a double line on top of the table. That row will be the control and is often denoted as the "control".

Double Line

A double line in the table indicates that the elastomer evaluated below the line was not compared to a control to determine the effect of a filler, additive, processing change or change in the polymer chemistry.

T80 Cure (not shown)

Stopping the polymerization process before completion could theoretically increase its bondability for two reasons. The first reason being that the lower cross-link density of the polymer allows for increased diffusion of the adhesive into the rubber. The second reason being that the active species that were not utilized during vulcanization can now react with the adhesive. In this testing, the polymerization was stopped when the modulus was 80% of the modulus at full cure.

• Notes

This section explains the superscripts and shading used in the table.

				9															
		Loctite [®] 3105™ Light Cure Adhesive	660 4.55	660 4.55	>7.52 >7.52	>660∆ >4.55∆	180 1.24	160 1.10	170 1.17	20 0.14	410 2.83	410 2.83	660 4.55	260 1.79	170 1.17	>430∆ >2.96∆	1020 7.03	320 2.21	
		Loctite [®] 330 [™] Depend [®] Adhesive	170 1.17	280 1.93	230	390 2.69	30 0.21	40 0.28	40 0.28	<10 <0.07	210 1.45	170 1.17	350 2.41	120 0.83	30 0.21	130 0.90	290 2.00	90 0.62	System Used Formulations Required
		Loctite° 5900° Flange Sealant, Heavy Body	170 1.17	170 1.17	170 1.17	60 0.41	30 0.21	50 0.34	50 0.34	100.070.07	110 0.76	40 0.28	80 0.55	100 0.69	20 0.14	170 1.17	250 1.72	170 1.17	mits. Cure imits. None by
_	echnology	Loctite Superflex RTV Silicone Adhesive Sealant	90 0. <mark>62</mark>	50 0.34	50 0.34	30 0.21	30 0.21	20 0.14	100.070.07	<10 <0.07	90 0.622	20 0.14	60 0.41	<10 <0.07	10 0.01	50 0.34	90 0. <mark>62</mark>	70 0.48	I 95% confidence li n 95% confidence l strength achieved
	pt Polymer T	Loctite* 4204 th Prism* Instant Adhesive	230 1. <mark>59</mark>	620 4.27	340 2.34	510 3.52	40 0.28	140 0.97	80 0.55	20 0.14	230 1.59	140 0.97	550 3.79	230 1. <mark>59</mark>	100 0. <mark>69</mark>	230 1.59	520 3.59	140 0.97	ond strength withir ond strength withir ond the actual bond
	ex by Conce	Loctite [®] 480 [™] Prism [*] Instant Adhesive	230 1.59	360 2.48	320 2.21	390 2.69	40 0.28	150 1.03	90 0.62	10 0.07	390 2.69	180 1.24	370 2.55	230 1.59	80 0.55	230 1.59	450 3.10	120 0.83	t increase in the b t decrease in the t bstrate failure bef
Isd) MP	cal and C-Fle	Loctite [®] 401 [™] Prism [®] Instant Adhesive with Loctite [®] 770 [™] Prism [®] Primer	370 2.55	570 3.93	580 4.00	>550∆ >3.79∆	>200∆ >1.35∆	150 1.03	>370∆ >2.55∆	20 0.14	370 2.55	370 2.55	550 3.79	160 1.10	220 1.52	370 2.55	630 4.34	150 1.03	atistically significan atistically significan atistically significan erial resulting in su
	Shell Chemic	Loctite [®] 401 [™] Prism [*] Instant Adhesive	>510∆ >3.52∆	>810∆ >5.59∆	510 3.52	>550∆ >3.52∆	180 1.24	>300∆ >2.07∆	300 2.07	<10 <0.07	510 3.52	240 1.65	510 3.52	190 1.31	>240∆ >1.65∆	280 1.93	510 3.52	130 0.90	lange) caused a sta lange) caused a sta trength of the mate
	Kraton by 3	Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	290 2.00	530 3.65	220 1.52	440 3.03	50 0.34	140 0.97	80 0.55	10 0.07	290 2.00	130 0.90	520 3.59	220 1.52	140 0.97	160 1.10	530 3.65	120 0.83	e (or processing ch e (or processing ch ens exceeded the s
	ш	ves	100 phr	100 phr 100 phr	100 phr 100 phr	100 phr 50 phr	100 phr 3 100 phr	100 phr 100 phr	100 phr 100 phr	100 phr 50 phr	100 phr 10 phr	100 phr 20 phr	100 phr 100 phr	100 phr 5 phr	100 phr	100 phr	100 phr 100 phr	100 phr	ated additiv ated additiv test specim- termined.
	adiene TP	nd Adhesi	1650	Kraton G 1650 N-550	Kraton G 1650 Dixie Clay	Kraton G 1650 Hi Sil 233	Kraton G 1650 Precipitated Whitin	Kraton G 1650 Aromatic Oil	Kraton G 1650 Naphthenic Oil	Kraton G 1650 Dioctyl Phthalate	Kraton G 1650 Carnauba Wax	Kraton G 1650 EVA	Kraton G 1650 Polyethylene	Kraton G 1650 Armostat 550			Kraton D 1101 Polystyrene		addition of the indica addition of the indica force applied to the adhesive could be de
	Styrene But:	Loctite [®] Bran	Control: Kraton G S-EB-S	Carbon Black	Clay	Silica	Whiting	Aromatic Oil	Naphthenic Oil	Plasticizer	Processing Aid	EVA Blend	PE Blend	Antistatic	C-Flex Silicone Oil	Kraton D 1101 S-B-S Linear	PS Blend	Kraton D 1118X SB Type Branched	NOTES: $\Box = The$ $\Box = The$ $\Delta = The$ the.

Butyl Rubber (IIR)

thermoset rubber

Trade Names Manufacturer

 Exxon Butyl 	Exxon Chemical
 Polysar Butyl 	Bayer

General Description

Butyl rubber is poly(methylpropene-co-2-methyl-1,3 butadiene) or poly(isobutylene-co-isoprene). The rubber gum stock is produced through the cationic polymerization of isobutylene with 1-3% isoprene. The isoprene is incorporated into the polymer structure to provide unsaturated sites which can be utilized to form cured rubber from the gum stock. Butyl rubber is typically cross-linked using sulfur, however, two other methods are also available. The first method is to react the butyl gum stock with phenol-formaldehyde resin. The other involves reacting it with p-quinone dioxime, or p-quinone dioxime dibenzoate, in conjunction with lead oxide. The cross-link density and ultimate properties of the cured rubber can be controlled by varying the amount of unsaturation in the base polymer. The properties of the base polymer are also controlled by varying the molecular weight of the polymer and the degree of branching in the gum stock. Halogenation of these rubbers has been used to produce the family of halogenated butyl rubbers which are discussed in a separate chapter.

General Properties

The saturation of the polymer backbone and lack of reactive groups result in a combination of valuable properties that have made butyl polymers one of the most widely used synthetic elastomers. The aliphatic nature of the polymer gives it good resistance to ozone, UV light, moisture and mineral acids. This also contributes to its thermal resistance, which is limited more by the type of cross-link system used than the stability of the polymer backbone. Butyl rubber formulations cured using sulfur tend to degrade after long-term exposure to temperatures above 302°F (150°C). Formulations which utilize the phenol formaldehyde resin cure system offer much better thermal resistance. Butyl rubber is attacked by nonpolar solvents, such as hydrocarbon oils, greases and fuels. Alternatively, butyl rubbers have good resistance to polar liquids such as oxygenated solvents, ester type plasticizers, vegetable oils and synthetic hydraulic fluids. The lack of bulky pendant groups on the polymer chains allows them to pack closely and give a vulcanizate with extremely low gas permeability. This has resulted in the widespread use of butyl rubber in

inner tubes and other industrial gas bladders. Butyl compounds have good damping and shock absorption characteristics which has led to their use in automotive body mounts.

Typical Applications

Automotive	Tire inner liners, inner tubes, radiator hose, belts
Electronics	Electrical insulation
 Industrial 	Conveyor belts, curing bladders, membranes, freezer gaskets, tank linings, steam hose, diaphragms

Miscellaneous Dock fenders

Relative Adhesive Performance

- High Methyl CA Loctite[®] 496[™] Super Bonder[®] Instant Adhesive Surface Insensitive CA - Loctite[®] 401[™] Prism[®] Instant Adhesive Primer - Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite[®] 770[™] Prism[®] Primer
- Medium Rubber Toughened CA Loctite[®] 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite[®] 4204[™] Prism[®] Instant Adhesive Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive
- Low Acetoxy Silicone Loctite[®] Superflex[®] RTV Silicone Adhesive Sealant Oxime Silicone - Loctite[®] 5900[®] Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite[®] 330[™] Depend[®] Adhesive

Effects of Formulation and Processing

- Additives
 Carbon Black Increase
 Clay Increase
 Silica Increase
 Paraffinic Oil Decrease
 Processing Aid Decrease
 Antistat Increase CA
- T₈₀ Cure No Trend Apparent

Surface Treatments

Loctite[®] 770[™] Prism[®] Primer – Increase

		AC	DHESIV	/E SHE/ (psi (MP	AR STR i) a)	RENGTH	-			
Butyl Rubber	Butyl Rubbe	er by Exxon Ch	emical							
Loctite [®] Brand	d Adhesives	Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 480 ^m Prism [®] Instant Adhesive	Loctite [®] 4204 ^m Prism [®] Instant Adhesive	Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite [®] 5900 [®] Flange Sealant, Heavy Body	Loctite [®] 330 ^m Depend [®] Adhesive	Loctite [®] 3105 [™] Light Cure Adhesive
Control: Butyl 165	100 p	ohr >90∆	>110∆	>140∆	100	>110∆	~ 10	60	60	90
	1.2% Unsaturation	>0.62∆	>0.76∆	>0.97∆	0.69	>0.76∆	• 10	0.41	0.41	<mark>0.62</mark>
Tg0 Cure	Butyl 165 100 p	phr >110∆	>130∆	>140∆	80	110	30	60	60	60
Cured to 80% of Modulus at Full C	Cure	>0.76∆	>0.90∆	>0.97∆	0.55	0.76	0.21	0.41	0.41	0.41
Low Unsaturation	Butyl 065 100 p	phr >110∆	>140∆	>140∆	100	110	20	40	80	80
	0.8% Unsaturation	>0.76∆	>0.97∆	>0.97∆	0.69	0.76	0.14	0.28	0.55	0.55
High Unsaturation	Butyl 268 100 p	phr >100∆	>110∆	>140∆	>100∆	>100∆	30	60	60	90
	1.6% Unsaturation	>0.69∆	>0.76∆	>0.97∆	>0.69∆	>0.69∆	0.21	0.41	0.41	0.62
Carbon Black	Butyl 165 100 p	bhr 430	>490∆	>640∆	170	340	80	130	170	300
	N-550 40 p	2.97	>3.38∆	>4.41∆	1.17	2.34	0.55	0.90	1.17	2.07
Clay	Butyl 165 100 p	phr >210∆	>270∆	>230∆	150	150	60	100	140	160
	Dixie Clay 100 p	bhr >1.45∆	>1.86∆	>1.59∆	1.03	1.03	0.41	0.69	0.97	1.10
Silica	Butyl 165 100 p	phr >210∆	>330∆	>360∆	160	200	50	70	90	120
	Hi Sil 233 20 p	bhr >1.45∆	>2.28∆	>2.48∆	1.10	1.38	0.34	0.48	0.62	0.83
Paraffinic Oil	Butyl 165 100 p	bhr >80 ∆	>110∆	>100∆	60	70	20	30	30	60
	Paraffinic Oil 20 pl	thr >0.55 ∆	>0.76∆	>0.69∆	0.41	0.48	0.14	0.21	0.21	0.41
Processing Aid	Butyl 165 100 p	bhr 80	>110∆	>140∆	70	80	30	20	60	60
	Petrolatum 4 p	bhr 0.55	>0.76∆	>0.97∆	0.48	0.55	0.21	0.14	0.41	0.41
Antiozonant	Butyl 165 100 p	phr >120∆	>110∆	>140∆	>140∆	>110∆	20	40	60	90
	Vanox NBC 3.5 p	bhr >0.83∆	>0.76∆	>0.97∆	>0.97∆	>0.76∆	0.14	0.28	0.41	0.62
Antistatic	Butyl 165 100 p	phr >120∆	>140∆	>140∆	>130∆	>160∆	40	40	60	70
	Armostat 550 5 p	bhr >0.83∆	>0.97∆	>0.97∆	>0.90∆	>1.10∆	0.28	0.28	0.41	0.48
NOTES: \Box = The addit \Box = The addit Δ = The force the adhes	ion of the indicated addit ion of the indicated addit applied to the test specir sive could be determined.	tive (or processing char tive (or processing char mens exceeded the stru-	nge) caused a stat nge) caused a stati ength of the mater	istically significant in istically significant d ial resulting in subs	increase in the bor decrease in the bo strate failure befor	id strength within 9 nd strength within ' e the actual bond s	5% confidence limit 55% confidence limi trength achieved by	ts. Cure in All tits. Stearic Zinc O Sulfur MBT TMTD	System Used I Formulations Acid vide	1.00 phr 2.00 phr 2.00 phr 0.50 phr 1.00 phr

Chlorosulfonated Polyethylene (CSM)

thermoset rubber

Trade Names

Manufacturer

Hypalon

DuPont Dow Elastomers

General Description

Chlorosulfonated polyethylene (CSM) is produced via the simultaneous chlorination and chlorosulfonation of polyethylene in an inert solvent. The addition of the chlorine groups increases the molecular irregularity of the CSM which contributes to its flexibility. The pendant chlorine groups also increase chemical resistance and flame retardance, while the sulfonyl groups provide cross-linking sites. The sulfur content of CSM is normally maintained at approximately 1%, while the chlorine content varies over a wide range. Low chlorine content formulations retain some of the stiffer mechanical properties of PE due to their partial crystallinity. Increasing the chlorine content improves oil resistance and flame resistance.

General Properties

The most notable properties of CSM are its chemical resistance (especially to oxygen, oil and ozone), tensile properties and low temperature properties. The chemical resistance of CSM is much better than that of neoprene and nitrile rubbers. The extremely polar nature of the polymer's backbone makes it especially well suited for non-polar service environments. The ozone resistance of CSM is such that antiozonants are not normally used. CSM is tougher than silicone and EPDM. This is illustrated by the high tensile strengths that are achieved by CSM without high filler levels. The properties of CSM are very dependent on the chlorine content. As the chlorine content increases, the heat resistance, low temperature flexibility and electrical resistance decrease. The ozone resistance also decreases, but the effect is much lower in magnitude than that of the aforementioned properties. On the other hand, as the chlorine content increases, the flame resistance and oil resistance increase. The electrical properties of CSM are better than most elastomers, but not as good as EPDM. Compounds of CSM can be formulated with excellent abrasion resistance and brittle temperatures as low as -76°F (-60°C). Other noteworthy properties of CSM are its excellent radiation resistance and color stability.

Typical Applications

Automotive Hoses, spark plug boots

- Industrial Hoses, coatings
- Consumer Pond liners, roof membranes

Relative Adhesive Performance

- High Methyl CA Loctite[®] 496[™] Super Bonder[®] Instant Adhesive Surface Insensitive CA - Loctite[®] 401[™] Prism[®] Instant Adhesive Primer - Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite[®] 770[™] Prism[®] Primer
- Medium
 Rubber Toughened CA Loctite[®] 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite[®] 4204[™] Prism[®] Instant Adhesive Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive
- Low Acetoxy Silicone Loctite[®] Superflex[®] RTV Silicone Adhesive Sealant Oxime Silicone - Loctite[®] 5900[®] Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite[®] 330[™] Depend[®] Adhesive

Effects of Formulation and Processing

- Additives
 Low Chlorine Increase
 High Chlorine Increase
 Carbon Black Increase
 Calcium Carbonate Increase
 Clay Increase
 Silica Increase
 Titanium Dioxide Increase
 Antistatic Increase
- T₈₀ Cure No Trend Apparent

Surface Treatments

• Loctite[®] 770[™] Prism[®] Primer – Increase

Copolyester TPE

thermoplastic elastomer

Trade Names

Manufacturer

Hoescht Celanese

Ecdel

Eastman

- Hytrel
- DuPont GE
- Lomod
- Riteflex

General Description

Copolyester TPE is composed of alternating hard poly-1,4-butanediol terephthalate and soft long-chain polyalkylene ether terephthalate block copolymers connected by ester and ether linkages. Copolyester has an -A-B-A-B- structure. However, the performance of copolyester TPE is analogous to that of three block copolymers such as styrenic TPEs.

General Properties

The cost of copolyester TPE is above average, but the performance is also above average. They have 2 to 15 times the strength of conventional rubbers. This means that replacing a thermoset rubber with a copolyester TPE can result in a significant decrease in the part volume and weight. Consequently, the option of reducing the required size of the part while achieving the original mechanical and strength properties can significantly offset the higher cost of copolyester TPE. Copolyester TPE has very good resistance to organic solvents and aqueous solutions. However, they have poor resistance to halogenated solvents, acids and bases. They have moderate thermal resistance with recommended service temperatures ranging from -67 to 285°F (-55 to 140°C). Below their elastic limit, copolyester TPE has excellent physical properties. Tensile strength ranges from 3000 to 8000 psi (20.7 to 55.2 MPa). The elastic limit of copolyester TPE is only 25%, which is low for an elastomer. Above this elongation, the polymer will be permanently deformed. The low elongation is accompanied by an unusually high hardness. The hardness typically ranges from 40 to 75 Shore D. Plasticizer is not used when compounding copolyester TPEs. This makes copolyester TPE purer than most other TPEs which, consequently, makes them especially well suited for medical and food applications.

Typical Applications

- Fuel tanks, gear wheels, boots, Automotive drive belts
- Consumer Ski boots
- Industrial Gears, belts, bellows, boots, coil tubing and cables

Relative Adhesive Performance

- High Surface Insensitive CA - Loctite® 401[™] Prism[®] Instant Adhesive Primer - Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite® 770[™] Prism[®] Primer Light Curing Acrylic - Loctite[®] 3105™ Light Cure Adhesive
- Methyl CA Loctite[®] 496[™] Medium Super Bonder[®] Instant Adhesive Rubber Toughened CA - Loctite® 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite® 4204[™] Prism[®] Instant Adhesive Two-Part No-Mix Acrylic - Loctite® 330[™] Depend[®] Adhesive
- Acetoxy Silicone Loctite[®] Superflex[®] Low **RTV Silicone Adhesive Sealant** Oxime Silicone - Loctite[®] 5900[®] Flange Sealant, Heavy Body

Surface Treatments

Loctite[®] 770[™] Prism[®] Primer – Decrease

		AD	HESIV	/E SHE/ (ps) (MP)	AR STF () (a)	RENGT	-			
Copolyester TPE	Hytrel	by DuPont								
Loctite [®] Brand Adhesi	ves	Loctite [®] 496 ^m Super Bonder [®] Instant Adhesive	Loctite [®] 401 [™] Prism [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 480 [™] Prism [®] Instant Adhesive	Loctite [®] 4204 [™] Prism [®] Instant Adhesive	Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite° 5900° Flange Sealant, Heavy Body	Loctite [®] 330 [™] Depend [®] Adhesive	Loctite [®] 3105 [™] Light Cure Adhesive
Hytrel G5544	100 phr	330 <mark>2.28</mark>	1570 10.83	1510 10.41	510 <mark>3.52</mark>	560 <mark>3.86</mark>	20 0.14	170 1.17	350 2.41	1220 <mark>8.41</mark>
Hytrel 7246	100 phr	1180 8.14	1020 <mark>7.03</mark>	650 4.48	400 <mark>2.76</mark>	470 <mark>3.24</mark>	120 0.83	120 <mark>0.83</mark>	470 <mark>3.24</mark>	1170 8.07
NOTES: \Box = The addition of the indicate \Box = The addition of the indicate Δ = The force applied to the tes' adhesive could be determin	ed additive (ed additive (st specimen hed.	or processing chan or processing chan s exceeded the stre	ge) caused a stati ge) caused a stati ingth of the mater	istically significant i istically significant o ial resulting in subs	ncrease in the bo decrease in the bc strate failure befo	nd strength within ' and strength within re the actual bond	55% confidence limi 95% confidence lim strength achieved b	ts. Cure its. None y the	System Used Formulations Required	

Epichlorohydrin Rubber (CO, ECO, GCO, GECO)

thermoset rubber

Trade Names

Manufacturer

Zeon

Hydrin

General Description

Epichlorohydrin polymers are available as a homopolymer (CO) of epichlorohydrin, epichlorohydrin/ethylene oxide copolymer (ECO), epichlorohydrin/allyl glycidyl ether copolymer (GCO) and epichlorohydrin/ethylene oxide/allyl glycidyl ether terpolymer (GECO). The ethylene oxide content varies from zero in the homopolymer, to 32 to 35% for terpolymers and up to 50% for copolymers. As ethylene oxide content increases, the halogen content and polarity of the polymer decreases. Blends of the various rubber types are used to obtain specific properties. The ally glycidyl ether provides a cure site on the polymer backbone. This permits the use of other cure systems, such as peroxides, rather than the sulfur-based systems which are typically used for CO and ECO.

General Properties

All epichlorohydrin polymers offer low temperature flexibility; resistance to oils, fuel and common solvents; low gas permeability; good weatherability and good dynamic properties. The specific degree to which these properties are manifested varies with each type of epichlorohydrin polymer. Because all epichlorohydrin polymers have a completely saturated backbone, they all have good resistance to UV, ozone and thermal degradation. For the lowest gas permeability, the homopolymer is the polymer of choice. The lower halogen content in the copolymers and terpolymer imparts a higher degree of flexibility to the backbone and results in improved low temperature performance of the material. This improvement is gained at the expense of an increase in permeability. If the ECO copolymer is difficult to cure, or the properties that result from the sulfur-based cure systems are unacceptable, copolymer or terpolymer containing the allyl glycidyl ether monomer can be used. The unsaturated site opens the door to cure by a peroxide system. This yields improved high temperature properties and compression set resistance over sulfur cured systems. The copolymers and terpolymer have a lower halogen content than the pure homopolymer. Consequently, the resistance to non-polar solvents, such as fuels and oils, is decreased. Aqueous and nonaqueous electrolytes rapidly degrade the polar epichlorohydrin polymer.

Typical Applications

- Automotive Fuel pump diaphragms, hoses, motor mounts, boots, seals, o-rings, air conditioning system components
- Industrial Gaskets, rolls, belts, bladders
- Medical Oxygen mask hoses

Relative Adhesive Performance

- High Methyl CA - Loctite[®] 496[™] Super Bonder[®] Instant Adhesive Surface Insensitive CA - Loctite® 401[™] Prism[®] Instant Adhesive Primer - Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite® 770[™] Prism[®] Primer Rubber Toughened CA - Loctite® 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite® 4204[™] Prism[®] Instant Adhesive
- Medium Two-Part No-Mix Acrylic - Loctite® 330[™] Depend[®] Adhesive Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive
- Low Acetoxy Silicone - Loctite[®] Superflex[®] **RTV Silicone Adhesive Sealant** Oxime Silicone - Loctite® 5900® Flange Sealant, Heavy Body

Effects of Formulation and Processing

- Additives Hydrin C - Increase CA Hydrin T - Increase CA Carbon Black - Increase Plasticizer - Decrease
- T₈₀ Cure Increase CA

Surface Treatments

Loctite[®] 770[™] Prism[®] Primer – No Trend Apparent

		AD	HESIV	'E SHE/	AR STR	ENGTH	-			
				(MP	a)					
Epichlorohydrin Rubbe	L	Hydrin by Z	eon Chemic	cal Corporati	ion					
Loctite [®] Brand Adhesiv	les	Loctite [®] 496 ^m Super Bonder [®] Instant Adhesive	Loctite® 401 ^m Prism® Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 480 [™] Prism [®] Instant Adhesive	Loctite [®] 4204 th Prism [®] Instant Adhesive	Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite [®] 5900 [®] Flange Sealant, Heavy Body	Loctite [®] 330 ^m Depend [®] Adhesive	Loctite [®] 3105 [™] Light Cure Adhesive
Control: Hydrin H Homopolymer	100 phr	>120∆ >0.83∆	>110∆ >0.76∆	>140∆ >0.97∆	>100∆ >0.69∆	>120∆ >0.83∆	60 0.41	60 0.41	100 0.69	>160∆ >1.10∆
TBO Cure Hydrin H Cured to 80% of Modulus at Full Cure	100 phr	>150∆ >1.03∆	>160∆ >1.10∆	>140∆ >0.97∆	>130∆ >0.90∆	>120∆ >0.83∆	40 0.28	60 0.41	100 0.69	>200∆ >1.38∆
Hydrin C Hydrin c ECO copolymer	100 phr	>310∆ >2.14∆	>150∆ >1.03∆	>160∆ >1.10∆	>120∆ >0.83∆	>120∆ >0.83∆	60 0.41	60 0.41	80 0.55	160 1.10
Hydrin T Hydrin T GEC0 Terpolymer	100 phr	>140∆ >0.97∆	>150∆ >1.03∆	>140∆ >0.97∆	>100∆ >0.69∆	>110∆ >0.76∆	40 0.28	70 0.48	>60∆ >0.41∆	>160∆ >1.10∆
Carbon Black Hydrin H N-550	100 phr 25 phr	>750∆ >5.17∆	>870∆ >6.00∆	>480∆ >3.31∆	330 2.28	290 2.00	90 0.62	140 0.97	140 0.97	160 1.10
Calcium Carbonate Hydrin H Calcium Carbonate 50 phr	100 phr	>110∆ >0.76∆	>130∆ >0.90∆	>140∆ >0.97∆	>120∆ >0.83∆	>120∆ >0.83∆	30 0.21	60 0.41	100 0.69	>160∆ >1.10∆
Plasticizer Hydrin H Dioctyl Phthalate	100 phr 10 phr	>90∆ >0.62∆	>110∆ >0.76∆	>100∆ >0.69∆	>80∆ >0.55∆	>90∆ >0.62∆	30 0.21	50 0.34	70 0.48	>130∆ >0.90∆
NOTES: \square = The addition of the indicated \square = The addition of the indicated Δ = The force applied to the test adhesive could be determine	l additive (o l additive (c specimens ed.	r processing chan or processing chan exceeded the stre	ge) caused a stati ge) caused a stati ngth of the materi	stically significant i stically significant d al resulting in subs	ncrease in the bor lecrease in the bo itrate failure befor	id strength within 9 nd strength within e the actual bond s	15% confidence limi 95% confidence lim itrength achieved b	ts. Curr in A its. Zinc d Zo-9 y the Ethyle	e System Used II Formulations Oxide one Thiurea	3.00 phr 2.00 phr 2.00 phr

thermoset rubber

Trade Names

Manufacturer

Vamac

DuPont

General Description

Ethylene acrylic rubber is manufactured exclusively by DuPont under the trade name Vamac. Vamac is a terpolymer of ethylene, methacrylate and a small quantity of a third monomer which contributes a carboxylate cure site. Raising the level of methacrylate monomer in the terpolymer blend improves oil resistance, at the expense of low temperature flexibility. Ester plasticizers are used to improve low temperature properties, but can be lost in heat aging or extracted by solvents at high temperatures. These rubbers tend to stick to processing equipment and generally contain processing aids such as release agents. These products can be cured with peroxide cure systems, although superior properties generally result from the use of multivalent diamine cure systems. Ethylene acrylic rubber is commonly reinforced with carbon black to obtain best performance properties.

General Properties

Ethylene acrylic rubbers have better heat resistance and low temperature flexibility than polyacrylate rubbers. Ethylene acrylic rubber also offers excellent resistance to water. This, coupled with its resistance to UV and ozone, give it excellent weathering resistance. These improvements are gained while offering equivalent oil resistance to polyacrylate rubber. Other less notable improvements include the improved oxidative, alkali and acid resistance of Vamac over polyacrylate rubbers. Ethylene acrylic rubber offers poor resistance to non-mineral oil brake fluid, esters or ketones. They do, however, offer excellent resistance to diesel fuel, kerosene, ethylene glycol and water. Vamac has combustion products that are have a very low smoke density, toxicity and corrosivity.

Typical Applications

- Automotive Automotive fluid seals, gaskets, boots, grommets, vibration mounts, pads, cam covers, filters, o-rings, door seals, hose covers
- Electrical Wire and cable insulation

Relative Adhesive Performance

- Surface Insensitive CA Loctite® High 401[™] Prism[®] Instant Adhesive Primer - Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite® 770[™] Prism[®] Primer Rubber Toughened CA - Loctite® 4204[™] Prism[®] Instant Adhesive
- Medium Methyl CA - Loctite[®] 496[™] Super Bonder[®] Instant Adhesive Rubber Toughened CA - Loctite® 480[™] Prism[®] Instant Adhesive Two-Part No-Mix Acrylic - Loctite® 330[™] Depend[®] Adhesive Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive
- Low Acetoxy Silicone - Loctite[®] Superflex[®] **RTV Silicone Adhesive Sealant** Oxime Silicone - Loctite[®] 5900[®] Flange Sealant, Heavy Body

Effects of Formulation and Processing

- Additives Carbon Black - Increase Clay - Increase Silica - Increase Antistatic - Increase
- T₈₀ Cure Increase

Surface Treatments

Loctite[®] 770[™] Prism[®] Primer – Increase

		AL	DHESIV	/E SHE/ (psi	AR STR	ENGTH	-			
Ethvlene Acr	vlic Rubber	Vamac by	DuPont		5					
Loctite [®] Bran	nd Adhesives	Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive With Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 480 ^m Prism [®] Instant Adhesive	Loctite [®] Loctite [®] 4204 ^m Prism [®] Instant Adhesive	Loctite [®] Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite [®] 5900 [®] Flange Sealant, Heav Body	Loctite® 330 ^m Depend® Adhesive	Loctite [®] 3105 [™] Light Cure Adhesive
Control: Vamac B-	124 100 phr	130 0.90	>330∆ >2.28∆	>420∆ >2.90∆	130 <mark>0.90</mark>	140 0.97	30 <mark>0.2</mark> 1	110 0.76	170 1.17	190 1.31
Tg0 Cure Cured to 80% of Modulus at Fu	Vamac B-124 100 phr ull Cure	>400∆ >2.76∆	>330∆ >2.28∆	>420∆ >2.90∆	200 1.38	>370∆ >2.55∆	<10 <0.07	110 0.76	100 0.69	190 1.31
Carbon Black	Vamac B-124 100 phr N-550 25 phr	470 3.24	>810∆ >5.59∆	>970∆ >6.69∆	360 2.48	>740∆ >5.10∆	60 0.41	170 1.17	300 2.07	290 2.00
Clay	Vamac B-124 100 phr Dixie Clay 50 phr	260 1.79	330 2.28	420 2.90	>320∆ >2.21∆	470 <mark>3.24</mark>	<10 <0.07	150 1.03	280 1.93	>710∆ >4.90∆
Silica	Vamac B-124 100 phr Hi Sil 233 15 phr	>420∆ >2.90∆	>790∆ >5.45∆	>860∆ >5.93∆	330 2.28	>600∆ >4.14∆	<10 <0.07	150 1.03	170	330 2.28
Antistatic	Vamac B-124 100 phr Armostat 550 5 phr	>320∆ >2.21∆	>410∆ >2.83∆	>420∆ >2.90∆	>360∆ >2.48∆	>360∆ >2.48∆	110 0.76	110 0.76	120 0.83	190 1.31
NOTES: \Box = The ac \Box = The ac Δ = The foi adhesi	Idition of the indicated additive Idition of the indicated additive rce applied to the test specime we could be determined.	e (or processing char e (or processing char ens exceeded the str	nge) caused a stat nge) caused a stat ength of the mater	istically significant i istically significant c rial resulting in subs	ncrease in the bor decrease in the bo strate failure befor	id strength within 9 nd strength within 1 e the actual bond s	5% confidence limi 95% confidence lim trength achieved b	ts. Curre in All its. Armee HVA-2 Diak # Vulcur	System Used I Formulations I 18D A 18D A (All Except Grade C A (Arade G only)	0.50 phr 1.00 phr 1.50 phr 1.50 phr

Ethylene Propylene Rubber (EPM, EPDM)

thermoset rubber

Trade Names

Nordel

Manufacturer

- DuPont Polysar EPDM Bayer Royalene Uniroyal Vistalon Exxon Chemical
- **General Description**

EPDM is formed via the copolymerization of ethylene, propylene and a third comonomer in slurry or solution. The ethylene content of EPDM is typically 45 to 75%. The third comonomer is a non-conjugated diene. The three most prevalent in industry are dicyclopentadiene (DCPD), ethylidene norbornene (ENB) and 1,4 hexadiene (1,4 HD); the most commonly used being ENB. The polymerization of EPDM is catalyzed with a vanadium halide, halogenated aluminum alkyl and, in some cases, an activator. Due to the poor mechanical properties of unfilled EPDM, it typically requires reinforcing filler levels greater than 70 phr to be of practical value.

General Properties

EPDM is known for its superior resistance to ozone and oxidation as well as its relatively low cost. The low cost of compounded EPDM stems from its potential for high loading with low cost fillers. The aliphatic nature of the backbone results in the excellent weatherability of EPDM and also makes it extremely stable in color. Due to its non-polarity, EPDM has poor resistance to non-polar chemicals, such as aliphatic, aromatic and chlorinated hydrocarbons, and high resistance to polar solvents, such as ketones and alcohols. EPDM also exhibits good electrical properties due to the non-polar backbone and the amorphous regions of the polymer. EPDM responds well to loading, developing high tensile, tear and abrasion properties, and is frequently filled in high amounts (up to 700 phr). The most prevalent filler is carbon black. Other fillers that are commonly used are silicas, clays, talcs and ground whitings. EPDM has favorable thermal properties. Heat resistance of 300°F (150°C) can be achieved with sulfur accelerated cure systems, while 350°F (177°C) can be achieved using peroxide cure systems. In addition, peroxide cure systems result in EPDM rubbers with better compression set properties.

Typical Applications

- Automotive Hoses, belts, cable insulation, boots, seals, weatherstrip
- Consumer Garden hose, roof sheeting, ditch liners, coated fabrics
- Electronic Cable covers, underground wire, power cable insulation

Relative Adhesive Performance

- High Methyl CA - Loctite[®] 496[™] Super Bonder[®] Instant Adhesive Surface Insensitive CA - Loctite® 401[™] Prism[®] Instant Adhesive Prism Primer - Loctite® 401[™] Prism® Instant Adhesive with Loctite® 770[™] Prism[®] Primer
- Medium Rubber Toughened CA - Loctite® 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite® 4204[™] Prism[®] Instant Adhesive
- Low Acetoxy Silicone - Loctite® Superflex® **RTV Silicone Adhesive Sealant** Oxime Silicone - Loctite[®] 5900[®] Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite® 330[™] Depend[®] Adhesive Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive

Effects of Formulation and Processing

- Additives Clay - Increase Naphthenic Oil - Decrease Paraffinic Oil - Decrease
- T₈₀ Cure Increase

Surface Treatments

Loctite[®] 770[™] Prism[®] Primer – No Trend Apparent

Ethylene Propyler Ethylene Propyler Loctite Brand Ad Control: Vistalon 2504 PPA PPM. ENB Terpolymer Vistalon Tago Curre Vistalon 2504 Vistalon 404 Vistalon 2504 EPDM. HD Terpolymer Vistalon 404 Vistalon 3708 Nordel 1040 EPDM. Hgh Ethylene Vistalon Vistalon 3708 Nordel 1040 EPDM. High Ethylene Vistalon Nordel 1040 Nordel 1040 EPDM. High Ethylene Vistalon Nordel 1040 Norted Police Din 3708 Norted Police Inviso Vistalon Nordel 1040 Nistalon Police Inviso Vistalon Nordel 1040 Nistalon Police Inviso Nistalon Police Inviso Vistalon Polence Inviso Vistalon	Ine Rubber Ibe Rubber 100 phr 110 phr 1110 phr 1110 phr 1110 phr 1110 phr 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111	AD 1.000000000000000000000000000000000000	HESIV Italon 2504 b Instant Adhesive 40 ^M Prism ⁶ 100 2504 b >4.69Å >4.66% >4.66% >4.66% >4.66% >1.45Å >1.45Å >1.46% </th <th>C S H E / (DSi (PSi (DSi (MIP Oy Exxon Cho O Cho S = 580 Å S = 4.00 Å S = 4.00 Å S = 580 Å S = 4.00 Å S = 580 Å S = 1.72 Å S = 4.00 Å S = 580 Å S = 580 Å S = 4.00 Å S = 580 Å S = 580 Å S = 580 Å S = 4.00 Å S = 580 Å S = 580 Å S = 4.00 Å S = 580 Å S = 4.00 Å S = 580 Å S = 4.00 Å S = 580 Å S = 580 Å S = 580 Å</th> <th>AR STR a) a) a) a) a) a) a) b) b) b) b) b) b) b) b) b) b) b) b) b)</th> <th>ZENGTI del by DuPor del bor de the actual bond de the actual bond</th> <th>It, Royalene It, Royalene It, Royalene RRV Silicone Adhesive Seatant RRV Silicone Adhesive Seatant 80 0.55 0.41 80 0.55 0.41 80 0.55 0.41 80 0.55 0.41 80 0.55 0.41 80 0.55 0.34 0.35 90.34 0.28 0.39 0.28 0.39 0.31 95% confi- 95% confi- 95% confi- 95% confi-</th> <th>by Uniroyal by Uniroyal Flange Sealant Heavy Body Heavy Body 140 0.97 1.31 1.17 1.17 1.17 1.17 1.17 1.17 1.1</th> <th>and fiestine Addrestine Addrestine Addrestine 130 0.900 1.11 1.11 1.12</th> <th>Loctite 3105[™] 13105[™] 13105[™] 13105[™] 13105[™] 1110 0.76 110 0.76 110 0.76 110 0.76 110 0.76 110 0.76 0.76 0.76 0.76 110 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.7</th>	C S H E / (DSi (PSi (DSi (MIP Oy Exxon Cho O Cho S = 580 Å S = 4.00 Å S = 4.00 Å S = 580 Å S = 4.00 Å S = 580 Å S = 1.72 Å S = 4.00 Å S = 580 Å S = 580 Å S = 4.00 Å S = 580 Å S = 580 Å S = 580 Å S = 4.00 Å S = 580 Å S = 580 Å S = 4.00 Å S = 580 Å S = 4.00 Å S = 580 Å S = 4.00 Å S = 580 Å S = 580 Å S = 580 Å	AR STR a) a) a) a) a) a) a) b) b) b) b) b) b) b) b) b) b) b) b) b)	ZENGTI del by DuPor del bor de the actual bond de the actual bond	It, Royalene It, Royalene It, Royalene RRV Silicone Adhesive Seatant RRV Silicone Adhesive Seatant 80 0.55 0.41 80 0.55 0.41 80 0.55 0.41 80 0.55 0.41 80 0.55 0.41 80 0.55 0.34 0.35 90.34 0.28 0.39 0.28 0.39 0.31 95% confi- 95% confi- 95% confi- 95% confi-	by Uniroyal by Uniroyal Flange Sealant Heavy Body Heavy Body 140 0.97 1.31 1.17 1.17 1.17 1.17 1.17 1.17 1.1	and fiestine Addrestine Addrestine Addrestine 130 0.900 1.11 1.11 1.12	Loctite 3105 [™] 13105 [™] 13105 [™] 13105 [™] 13105 [™] 1110 0.76 110 0.76 110 0.76 110 0.76 110 0.76 110 0.76 0.76 0.76 0.76 110 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.7
				(MP	a)					
Ethylene Propyler Loctite [®] Brand Ad Control: Vistalon 2504 EPDM. ENB Terpolymer Tg0 Cure Vistalon Cured to 80% of Modulus at Full Cure Cured to 80% of Modulus at Full Cure Vistalon 3708 EPDM. High Ethylene	Idesives 100 phr	Loctite ⁶ Loctite ⁶ 90 ^{en} Super 80 ^{en} Super 90 ^{en} Super 90 ^{en} Super 186 ^{en} >270 1.86 ^A >1.86 ^A >1.86 ^A >270 ^A >1.86 ^A >270 ^A >1.86 ^A >270 ^A >1.86 ^A >1.86 ^A >1.86 ^A >1.86 ^A >1.86 ^A 1.90 1.31 1.31	talon 2504 t Loctife ⁶ Loctife ⁶ A01 th Prism ⁶ >680∆ >4.69∆ >4.69∆ >4.69∆ >2.48∆ >2.48∆ >2.48∆ >2.10∆ >1.45∆ >1.45∆ >1.45∆	oy Exxon Cho Loctite* 10, Prism* Instant Adhesive with Loctife* 770° With Loctife* 770° With Loctife* 770° P580∆ >4.00∆ >4.69∆ >2.41∆ >2.41∆ >2.41∆ >2.580∆ >3.38∆ >2.50∆ >2.680∆ >2.41∆ >2.680∆ >2.6	emical, Norc Loctite* Instant Adhesive 230 1.59 >1.59∆ 0.55 0.55 1.59∆ 1.59 1.59 230 1.59 230 1.59	del by DuPor Loctite [•] Loctite [•] 1240 [™] Prism [•] 166 >500∆ >3.45∆ >3.45∆ >2.40∆ >1.66∆ >2.340 >1.66∆ >2.340	tt, Royalene Loctite ^e RTV Silicone Adhesive Sealant 80 0.55 <10 <10 <10 <10 <0.55 0.60 0.41 80 0.41 80 0.55 0.55 80 0.55 0.55 80 0.55 80 0.55 80 0.55 80 0.55 80 0.55 80 0.55 80 0.55 80 0.55 80 0.55 80 0.55 80 0.55 80 0.55 80 0.55 80 0.55 80 0.55 80 0.55 80 0.55 80 80 0.55 80 80 0.55 80 80 80 80 80 80 80 80 80 80 80 80 80	by Uniroyal Loctite [®] 5900 [®] Hange Sealant, Heavy Body 140 0.97 1.31 1.31 1.31 1.31 1.31 1.31 1.17 1.17	Locitie [®] 330 ^m Depend [*] Adhesive 130 ^m Depend [*] Adhesive 1300 ^m 0.900 0.900 0.900 0.55 0.900 0.55 0.900 0.9	Loctifie [®] 19105 [™] Light Curre Adhesive 110 0.76 0.76 0.76 0.76 340 2.34 110 0.76 0.76 0.76 0.76 0.76 110 0.76
Carbon Black Vistation N-550 N-550 Clay Vistation Clay Vistation Dixie Cli Vistation Sillica Hi Sil 23 Naphthenic Oil Vistation Paraffinic Oil Vistation	(2504 100 phr (2504 100 phr ay 200 phr (2504 100 phr (2504 100 phr 33 20 phr anic Oil 25 phr anic Oil 25 phr (2504 100 phr	510 3.52 >200∆ 270 1.86 >380∆ >2.62∆ 262∆	>680 ^Δ >4.69 ^Δ >270 ^Δ >1.86 ^Δ >3.66 ^Δ >3.52 ^Δ >3.52 ^Δ >3.45 ^Δ	>410 ^Δ >2.83 ^Δ >2.83 ^Δ >1.72 ^Δ	230 1.59 >280 ^Δ >1.93 ^Δ 1.59 1.59 0.83 150	>540∆ >3.72∆ >1.52∆ >1.52∆ >1.52∆ 1.66 1.10 1.10	60 0.41 80 0.55 0.55 <10 <0.07 40 0.28 0.28	230 1.59 1.66 1.66 1.31 1.31 1.31 1.31 1.31 1.31	110 0.76 1.72 1.72 0.90 0.55 90 90	210 1.45 >290∆ >2.00∆ 110 0.76 0.76 0.76
Paramu Antistatic Vistaton Armosta Ar	ic Oil 25 ptr 2504 100 ptr at 550 5 ptr e indicated additive to the test specimen inhesive could be dei	>470 [∆] >3.24 [∆] >3.24 [∆] (or processing chan, (or processing chan, is exceeded the stre lerrnined.	>3.49 >400 $^{\land}$ >2.76 $^{\land}$ ge) caused a stati: ge) caused a stati: ngth of the materi	>4.00 >390 ^Δ >2.69 ^Δ stically significant c stically significant c all resulting in subs	>2.76 $^{\land}$ >2.76 $^{\land}$ hcrease in the bo decrease in the bc	>420Å >2.90Å nd strength within and strength within the actual bond	50 50 0.34 95% confi- 95% confi- strength	Cure System and 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	130 0.90 0.90 0.00 phr Zinc Oxid No phr Zinc Oxid Charty XT	110 110 0.76 0.76 0.76 0.76 100 phr 1.00 phr 1.00 phr 1.00 phr 1.00 phr 1.00 phr 1.00 phr 1.00 phr

Ethylene-Vinyl Acetate Copolymer (EVA)

thermoset rubber or thermoplastic elastomer

Trade Names

Manufacturer

Quantum Chemicals

Elvax

DuPont

- Escorene
 - Exxon Chemical B.P. Chemicals
- EvazoteUltrathene

General Description

Ethylene-vinyl acetate copolymer is formed through the copolymerization of ethylene and vinyl acetate by continuous bulk polymerization or solution polymerization. Since bulk polymerization produces polymer too low in molecular weight to be useful in the rubber industry, solution polymerization is predominately used. Common grades have vinyl acetate contents ranging from 2% to 50%. As the vinyl acetate content changes, the crystallinity of the polymer decreases from 60% to 10%, respectively. Since EVA is a thermoplastic, it can be processed by methods common to thermoplastics such as extrusion, injection molding, blow molding, calendering, and rotational molding. Subsequent cross-linking with a peroxide cure system can yield thermoset EVA.

General Properties

The properties of ethylene-vinyl acetate copolymer vary depending primarily on the level of vinyl acetate in the copolymer. At lower levels of vinyl acetate, the copolymer is a thermoplastic with properties similar to low density polyethylene. As the vinyl acetate content is increased, the copolymer takes on the performance characteristics of a thermoplastic elastomer until the crystallinity drops so low that the copolymer forms a soft rubbery material with minimal physical strength. The copolymer containing high levels of vinyl acetate is primarily used as a component in adhesives and coatings but can be vulcanized to obtain useful physical properties. As vinyl acetate content increases, polymer flexibility, toughness, solubility in organic solvents and clarity increase. The lowered crystallinity caused by the addition of the vinyl acetate contributes to good durability at lower temperatures and environmental stress cracking resistance. The enhanced flexibility is accompanied by lower softening point temperatures as the vinyl acetate content increases, which limits the upper service temperatures of these materials. EVA has good resistance to salt water and bases, but is not compatible with strong oxidizers. Grades offering good resistance to hydrocarbon greases are available, but EVA

copolymers are generally readily soluble in a wide range of aliphatic, aromatic and chlorinated solvents. Grades offering good resistance to UV degradation and ozone are also available.

Typical Applications

 Appliances Freezer door gaskets, convoluted tube for vacuum cleaners Electrical Foams for static sensitive devices Industrial Hoses, tubes Shrink wrap film Packaging Medical Disposable gloves, anaesthesia face masks and hoses Miscellaneous Adhesives, coatings, sealants, solar cell encapsulants, baby bottle nipples

Relative Adhesive Performance

- High
 Surface Insensitive CA Loctite®
 401[™] Prism® Instant Adhesive
 Primer Loctite® 401[™] Prism®
 Instant Adhesive with Loctite®
 770[™] Prism® Primer
- Medium Methyl CA Loctite[®] 496[™] Super Bonder[®] Instant Adhesive Rubber Toughened CA - Loctite[®] 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite[®] 4204[™] Prism[®] Instant Adhesive Two-Part No-Mix Acrylic - Loctite[®] 330[™] Depend[®] Adhesive
- Low Acetoxy Silicone Loctite® Superflex® RTV Silicone Adhesive Sealant Oxime Silicone - Loctite® 5900® Flange Sealant, Heavy Body

Effects of Formulation and Processing

 Additives Antistatic - Increase High Vinyl Acetate - Decrease Low Vinyl Acetate - Increase

Surface Treatments

• Loctite[®] 770[™] Prism[®] Primer – Increase

	AL	OHESIV	/E SHE/ (ps) (MP)	AR STR () (a)	RENGTH	-			
Ethylene-Vinyl Acetate C	opolymer	Elvax b	y DuPont						
Loctite [®] Brand Adhesives	S Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive	Loctite® 401 ^m Prism® Instant Adhesive with Loctite® 770 ^m Prism® Primer	Loctite [®] 480 ^m Prism [®] Instant Adhesive	Loctite [®] 4204 [™] Prism [®] Instant Adhesive	Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite° 5900° Flange Sealant, Heavy Body	Loctite [®] 330 [™] Depend [®] Adhesive	Loctite [®] 3105 ^m Light Cure Adhesive
Control: Elvax 560	t phr 360	430	>470∆	240	300	50	50	360	780
15% Vinyl Acetate	2.48	<mark>2.97</mark>	> <mark>3.24</mark> ∆	1.66	2.07	0.34	<mark>0.34</mark>	2.48	5.38
Antistatic Elvax 560 100	phr 510	550	>830∆	530	>580∆	10	10	220	780
Armostat 550 5	phr 3.52	3.79	>5.72∆	3.66	>4.00∆	0.07	0.07	1.52	5.38
Elvax 150 100	phr 300	320	>830∆	220	290	10	70	290	670
32% Vinyl Acetate		2.21	>5.72∆	1.52	2.00	0.07	0.48	2.00	4.62
Elvax 760 100	phr 250	>870∆	>660∆	360	>410∆	10	50	410	780
9.3% Vinyl Acetate	1.72	> <mark>5.72</mark> ∆	>4.55∆	2.48	>2.83∆	0.07	<mark>0.34</mark>	2.83	<mark>5.38</mark>
NOTES: \Box = The addition of the indicated add \Box = The addition of the indicated add Δ = The force applied to the test spec adhesive could be determined.	litive (or processing chan litive (or processing chan cimens exceeded the str	nge) caused a stat nge) caused a stat ength of the mater	istically significant i istically significant c ial resulting in sub s	ncrease in the bor decrease in the bo strate failure befor	id strength within 9 nd strength within 6 e the actual bond s	5% confidence limi 5% confidence lim trength achieved b	its. Cure its. None y the	System Used Formulations	

thermoset rubber

Trade Names

Manufacturer

- Dai-el
- Daikin
- Fluorel
- Kalrez Tecnoflon
- Viton
- 3M DuPont Ausimont **DuPont Dow Elastomers**

General Description

Fluoroelastomers are produced by the polymerization of various fluorine containing monomers. Commonly used monomers include vinylidene fluoride, hexafluoropropylene, per fluoro (methyl vinyl ether) and tetrafluoroethylene. Generally, these monomers are used in conjunction with other non-fluorine containing monomers which contribute cure sites and help alter the fluorine content. The primary factors that influence the cured performance characteristics are the fluorine content and the cure system used. Fluoroelastomers of varying fluorine content are divided into the following groups: A-66%; B-68%; F-70% and a fourth group of specialty grades. The fluorine content of the rubber is controlled by monomer type and monomer ratio. Cure systems commonly used with fluoroelastomers include diamines, bisphenol and peroxide types.

General Properties

Fluoroelastomers are known for their outstanding thermal and chemical resistance. They are generally capable of long-term service at temperatures of 392°F (200°C). It has been reported that some grades can withstand intermittent exposure to temperatures as high as 644°F (340°C). These properties stem from the high polarity of the fluorine group, the high bond energy of the fluorine-carbon bond and the complete saturation of the fluorocarbon backbone. The physical properties of fluorocarbon elastomers are dependent on the ionic attraction between adjacent fluorine and hydrogen atoms. This attraction leads to brittle point temperatures as high as -13°F (-25°C). This tendency towards poor flexibility at low temperatures increases as the fluorine content of the polymer increases. Fluorosilicones or specialty grades of fluorocarbon elastomers are generally used where good low temperature flexibility is required. Fluoroelastomers show very good resistance to hydrocarbons, acids and chlorinated solvents. To improve the oil resistance of fluoro-elastomers, the fluorine content can be increased. Increasing the fluorine content will decrease its resistance to polar solvents due to the increased polarity of the polymer. Fluoroelastomers can also be

attacked by bases and amines. To address these limitations, specialty formulations are available with improved chemical resistance.

Typical Applications

- Aerospace Fuel seals, manifold gaskets, fuel tank bladders, firewall seals
- Appliances Copier fuser rolls
- Automotive Shaft seals, fuel lines and seals, carburetor parts, gaskets
- Electronics Electrical connectors, wire and cable insulation
- Industrial Flue ducts, gaskets, hoses, oil well seals, pump linings

Relative Adhesive Performance

- High Methyl CA - Loctite[®] 496[™] Super Bonder[®] Instant Adhesive Surface Insensitive CA - Loctite® 401[™] Prism[®] Instant Adhesive Primer - Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite® 770[™] Prism[®] Primer Rubber Toughened CA - Loctite® 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite® 4204[™] Prism[®] Instant Adhesive Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive
- Acetoxy Silicone Loctite[®] Superflex[®] I ow **RTV** Silicone Adhesive Sealant Oxime Silicone - Loctite[®] 5900[®] Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite® 330[™] Depend[®] Adhesive

Effects of Formulation and Processing

- Additives Carbon Black - Increase Barium Sulfate - Increase Silica - Increase Processing Aid - Decrease Antistat - Decrease
- T₈₀ Cure No Trend Apparent

Surface Treatments

Loctite[®] 770[™] Prism[®] Primer – No Trend Apparent

		AD	HESIV	TE SHE/ (psi (MP)	AR STR () a)	ENGTH	-			
Fluorocarbon Ru	Ibber Viton	by DuPont D	ow Elastome	ers and Fluor	el by 3M					
Loctite [®] Brand A	dhesives	Loctite [®] 496 ^m Super Bonder [®] Instant Adhesive	Loctite [®] 401 [™] Prism [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 480 [™] Prism [®] Instant Adhesive	Loctite [®] 4204 ^m Prism [®] Instant Adhesive	Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite° 5900° Flange Sealant, Heavy Body	Loctite® 330 th Depend® Adhesive	Loctite [®] 3105 [™] Light Cure Adhesive
Control: Viton E-60C	100 phr	>300∆	>300∆	280	>330∆	>270∆	70	120	130	>510∆
Group A: Dipolymer, 66% Fluorine		>2.07∆	>2.07∆	1. <mark>93</mark>	>2.28∆	>1.86∆	0.48	<mark>0.83</mark>	0.90	>3.52∆
T80 Cure vitor	E-60C 100 phr	>300∆	>300∆	280	>330∆	270	70	120	130	>510∆
cured to 80% of Modulus at Full Cure		>2.07∆	>2.07∆	1.93	>2.28∆	1.86	0.48	0.83	0.90	>3.52∆
Viton B	100 phr	>300∆	>300∆	>280∆	200	>210∆	70	110	130	>400∆
Group B: Terpolymer, 68% Fluorine		>2.07∆	>2.07∆	>1.93∆	1.38	>1.45∆	0.48	0.76	0.90	>2.76∆
Fluorel 57300 SMF	-5 100 phr	>280∆	>350∆	>280∆	230	>270∆	40	80	80	>510∆
Group F: High Fluorine, 70% Fluorine		>2.93∆	>2.41∆	>1.93∆	1.59	>1.86∆	0.28	0.55	0.55	>3.52∆
Carbon Black vitor	E-60C 100 phr	>440∆	>530∆	>520∆	>520∆	>560∆	70	190	240	>830∆
	1990 30 phr	>3.03∆	> <mark>3.66</mark> ∆	>3.59∆	>3.59∆	>3.86∆	0.48	1.31	1.66	>5.72∆
Barium Sulfate vitor	E-60C 100 phr	>240∆	>300∆	>280∆	>330∆	>270∆	100	170	200	>510∆
Bariu	m Sulfate 50 phr	>1.66∆	>2.07∆	>1.93∆	>2.28∆	>1.86∆	0.69	1.17	1.38	>3.52∆
Silica Vitor	E-60C 100 phr	>660∆	>750∆	>730∆	>690∆	>790∆	70	210	310	>1060∆
Polyethylene Glycol 2.5 phr. Hi Si	233 15 phr	>4.55∆	>5.17∆	>5.03∆	>4.76∆	>5.45∆	0.48	1.45	2.14	>7.31∆
Processing Aid vitor cam	E-60C 100 phr	>250∆	>300∆	>280∆	>330∆	>270∆	70	120	130	>410∆
	auba Wax 5 phr	>1.72∆	>2.07∆	>1.93∆	>2.28∆	>1.86∆	0.48	0.83	0.90	>2.83∆
Processing Aid Vitor	E-60C 100 phr	>120∆	>140∆	>150∆	>110∆	>140∆	70	120	150	>170∆
Dyne	mar PPA-790 5 phr	>0.83∆	>0.97∆	>1.03∆	>0.76∆	>0.97∆	0.48	<mark>0.83</mark>	1.03	>1.17∆
Antistatic v _{itor}	E-60C 100 phr	>150∆	>200∆	>180∆	>160∆	>270∆	50	100	>170∆	>360∆
	stat 550 5 phr	>1.03∆	>1.38∆	>1.24∆	>1.10∆	>1.86∆	0.34	0.69	>1.17∆	>2.48∆
 NOTES: = The addition of = The addition of Δ = The force appliadesive could 	the indicated additive the indicated additive ed to the test specime be determined.	e (or processing char e (or processing char ens exceeded the str	nge) caused a stati nge) caused a stati ength of the materi	stically significant i stically significant d al resulting in subs	ncrease in the bor lecrease in the bo trate failure befor:	id strength within 9 nd strength within ⁶ e the actual bond s	5% confidence limi 95% confidence lim itrength achieved b	ts. Cure in Al its. Maglit y the Calciu	System Used II Formulations te D m Hydroxide	3.00 phr 6.00 phr

thermoset rubber

Trade Names

Manufacturer

- FE
- Shinetsu Chemical Company
- FSE General Electric
- LS Dow Corning

General Description

Fluorosilicone rubber has an inorganic silicone backbone, comprised of siloxane linkages (siliconoxygen bonds). This, coupled with the highly polar pendant trifluoropropyl groups, give fluorosilicones a unique combination of properties. The siloxane backbone provides superior flexibility at low temperatures compared to other fluoroelastomers. The pendant trifluoropropyl groups make the elastomer extremely polar which increases its resistance to nonpolar solvents. Silicone elastomers have one pendant methyl group and one pendant trifluoropropyl group for 40-90 mole % of the silicon atoms on the backbone depending on the fluorine content of the monomers selected. A small percent of silicon atoms with a pendant vinyl group will be incorporated into the polymer chain to serve as cross-link sites. Typically, it is required for fluorosilicones to be reinforced with silica to obtain useful physical properties.

General Properties

Fluorosilicones are renowned for their fuel resistance and utility in extreme temperature service environments. The siloxane backbone results in a polymer with excellent UV, ozone and thermal resistance. The maximum recommended service temperature is in excess of 392°F (200°C) for most grades with brittle points as low as -85°F (-65°C). This results in better flexibility at low temperatures than fluorocarbon elastomers can offer. The polarity of the fluorosilicone elastomer results in very good resistance to non-polar solvents such as aliphatic and aromatic hydrocarbons commonly used in fuels. In comparison to silicone rubbers, the primary advantage of fluorosilicone rubbers is their exceptional resistance to non-polar solvents which would normally cause severe swelling of the PMVQ rubbers. On the other hand, the fluorosilicone will have less resistance to polar solvents than PMVO rubbers.

Typical Applications

- Automotive O-rings, seals
- Industrial Shaft seals, gaskets, molded goods, duct hoses
- Electronics Wire and cable insulation

Relative Adhesive Performance

- High Surface Insensitive CA Loctite[®] 401[™] Prism[®] Instant Adhesive Primer - Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite[®] 770[™] Prism[®] Primer
- Medium
 Rubber Toughened CA Loctite® 4204[™] Prism® Instant Adhesive Acetoxy Silicone - Loctite® Superflex® RTV Silicone Adhesive Sealant Oxime Silicone - Loctite® 5900® Flange Sealant, Heavy Body Light Curing Acrylic - Loctite® 3105[™] Light Cure Adhesive
- Low Methyl CA Loctite[®] 496[™] Super Bonder[®] Instant Adhesive Rubber Toughened CA - Loctite[®] 480[™] Prism[®] Instant Adhesive Two-Part No-Mix Acrylic - Loctite[®] 330[™] Depend[®] Adhesive

Effects of Formulation and Processing

- Additives Carbon Black Increase Calcium Carbonate - Increase Fluorosilicone Oil - Decrease
- T₈₀ Cure No Trend Apparent

Surface Treatments

• Loctite® 770™ Prism® Primer – Increase

	AL	DHESIV	/E SHE/ (psi	AR STR	RENGTH	-			
			(MP)	a)					
Fluorosilicone Rubber	FSE 2620L	by General	Electric						
Loctite [®] Brand Adhesives	Loctite [®] 496 ^m Super Bonder [®] Instant Adhesive	Loctite [®] 401 th Prism [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 480 [™] Prism [®] Instant Adhesive	Loctite [®] 4204 th Prism [®] Instant Adhesive	Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite° 5900° Flange Sealant, Heavy Body	Loctite [®] 330 [™] Depend [®] Adhesive	Loctite [®] 3105 [™] Light Cure Adhesive
Control: FSE 2620U	br 60	>190∆	>240∆	70	110	110	160	90	120
	0.41	>1.31∆	>1.66∆	0.48	<mark>0.76</mark>	<mark>0.76</mark>	1.10	<mark>0.62</mark>	<mark>0.83</mark>
Tgo Cure FSE 2620U 100 µ Cured to 80% of Modulus at Full Cure 100 µ 100 µ 100 µ 100 µ 100 µ 100 µ	bhr 60	230	>240∆	70	110	80	160	60	120
	0.41	1.59	>1.66∆	0.48	0.76	0.55	1.10	0.41	0.83
Carbon Black FSE 2620U 100 F	hr 80	210	>240∆	120	120	110	240	90	120
N-550 25 p	hr 0.55	1.45	>1.66∆	0.83	0.83	0.76	1.66	0.62	0.83
Calcium Carbonate FSE 2620U 100 F	hr 100	>190∆	>240∆	90	110	170	160	90	190
Calcium Carbonate 40 F	hr 0.69	>1.31∆	>1.66∆	0.62	0.76	1.17	1.10	0.62	1.31
Silica FSE 2620U 100 F	hr 60	>190∆	>240∆	70	110	110	160	90	120
Aerosil 200 10 p	hr 0.41	>1.31∆	>1.66∆	0.48	0.76	0.76	1.10	0.62	<mark>0.83</mark>
Fluorosilicone Oil Fise 2620U 100 F	hr 260	>130∆	>150∆	50	80	110	160	<10	70
Fluorosilicone Oil 10 p	hr 1.79	>0.90∆	>1.03∆	0.34	0.55	0.76	1.10	<0.07	0.48
NOTES: \Box = The addition of the indicated addit \Box = The addition of the indicated addit Δ = The force applied to the test speci adhesive could be determined.	ive (or processing chai ive (or processing chai mens exceeded the str	nge) caused a stati nge) caused a stati ength of the mater	istically significant i istically significant d ial resulting in subs	ncrease in the bor lecrease in the bo trate failure befor	d strength within 9 nd strength within e the actual bond 9	5% confidence limi 55% confidence lim trength achieved by	ts. Curre Rein Al its. Dicup	• System and forcement Use I Formulations	d 2.00 phr 5.00 phr

Halogenated Butyl Rubber (BIIR, CIIR)

thermoset rubber

Trade Names

Manufacturer

- Exxon Bromobutyl Exxon Chemical Exxon Chemical
- Exxon Chlorobutyl
- Polysar Bromobutyl Bayer
- Polysar Chlorobutyl Bayer

General Description

Halogenated butyl rubber is created by the halogenation of butyl rubber with either bromine or chlorine. Bromine or chlorine is added to the butyl polymer at a 1:1 molar ratio of halogen to isoprene. The addition of the halogen atoms to the butyl backbone increases the polarity of the non-polar butyl rubber. The increase in polarity yields rubber with better resistance to non-polar hydrocarbons and allows it to be blended with more polar rubbers which contain unsaturation. As a result, halobutyl rubbers can be covulcanized with natural rubber, neoprene, styrene butadiene, nitrile, chlorosulfonated polyethylene, butyl, EPDM, and epichlorohydrin elastomers. Another benefit of halogenation is that the allylic halogen structures formed facilitate cross-linking by cure systems other than sulfur. This avoids the thermal limitations of sulfur cured butyl rubber while retaining the low gas permeability and good environmental resistance inherent in butyl rubbers.

General Properties

The key performance feature of butyl rubber is its extremely low permeability to gas and moisture. This is attributed to the long aliphatic polymer backbone and absence of bulky pendant groups which allow the polymer chains to pack together very well. The primary difference between halogenated butyl and butyl rubbers is that the former can be cross-linked by a variety of different cure systems, while the latter cannot. This results in halogenated butyl rubbers having improved thermal resistance over butyl rubbers because they can be cross-linked with non-sulfur cross-link systems. Furthermore, the use of non-sulfur based cure systems also results in a purer rubber with less extractables. This makes halobutyl rubber compounds well suited for pharmaceutical closures. When formulated to offer good flex resistance, chlorobutyl covulcanizates with natural rubber are widely used as inner liners for tubeless tires, especially in steel-belted radial tires.

Typical Applications

- Automotive Tire inner liners, tire sidewalls, tire tread components, hoses, engine mounts
- Electronics Electrical insulation
- Industrial Conveyor belts, curing bladders, membranes, tank linings, steam hose, diaphragms, gas bladders
- Medical Pharmaceutical closures
- Miscellaneous Bridge bearing pads, ball bladders, pond-liner membranes, roofing

Relative Adhesive Performance

- Methyl CA Loctite[®] 496[™] High Super Bonder[®] Instant Adhesive Surface Insensitive CA - Loctite® 401[™] Prism[®] Instant Adhesive Primer - Loctite® 401[™] Prism® Instant Adhesive with Loctite® 770[™] Prism[®] Primer
- Medium Rubber Toughened CA - Loctite® 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite® 4204[™] Prism[®] Instant Adhesive Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive
- Low Acetoxy Silicone - Loctite[®] Superflex[®] **RTV Silicone Adhesive Sealant** Oxime Silicone - Loctite[®] 5900[®] Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite® 330[™] Depend[®] Adhesive

Effects of Formulation and Processing

- Additives Carbon Black - Increase Calcium Carbonate - Increase Clay - Increase Silica - Increase Aliphatic Oil - Increase Naphthenic Oil - Decrease Antistatic - Increase for CAs
- T₈₀ Cure No Trend Apparent

Surface Treatments

Loctite[®] 770[™] Prism[®] Primer – No Trend Apparent

					sq) MP	(j					
Halogenated	Butyl Ruk	ober	Bromobuty	l and Chlor	obutyl by Exx	ton Chemica	_				
Loctite [®] Brand	d Adhesiv	/es	Loctite [®] 496 ^m Super Bonder [®] Instant Adhesive	Loctite [®] 401 [™] Prism [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 480 ^m Prism [®] Instant Adhesive	Loctite [®] 4204 ^m Prism [®] Instant Adhesive	Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite [®] 5900 [®] Flange Sealant, Heavy Body	Loctite [®] 330 ^m Depend [®] Adhesive	Loctite [®] 3105 ^m Light Cure Adhesive
Control: Bromobutyl	2244	100 phr	>170∆ >1.17∆	>190∆ >1.31∆	>180∆ >1.24∆	80 <mark>0.55</mark>	110 <mark>0.76</mark>	40 <mark>0.28</mark>	80 <mark>0.55</mark>	60 0.41	130 0.90
T80 Cure	Bromobutyl 2244	100 phr	>170∆	>190∆	>180∆	80	>130∆	20	60	60	130
Cured to 80% of Modulus at Full C	ture		>1.17∆	>1.31∆	>1.24∆	0.55	>0.90∆	0.14	0.41	0.41	0.90
Chlorobutyl	Chlorobutyl 1066	100 phr	>130∆ >0.90∆	>130∆ >0.90∆	>130∆ >0.90∆	80 <mark>0.55</mark>	110 <mark>0.76</mark>	40 0.28	80 0.55	80 0.55	130 0.90
Carbon Black	Bromobutyl 2244	100 phr	500	>560∆	>540∆	140	230	50	130	140	130
	N-550	40 phr	3.45	>3.86∆	>3.72∆	0.97	<mark>1.59</mark>	0.34	0.90	0.97	0.90
Calcium Carbonate	Bromobutyl 2244	100 phr	>140∆	>140∆	>140∆	120	>110∆	60	80	100	190
	Calcium Carbonate	100 phr	>0.97∆	>0.97∆	>0.97∆	<mark>0.83</mark>	>0.76∆	0.41	0.55	0.69	1.31
Clay	Bromobutyl 2244	100 phr	190	240	180	160	150	80	140	140	320
	Dixie Clay	100 phr	1.31	1.66	1.24	1.10	1.03	0.55	<mark>0.97</mark>	0.97	2.21
Silica	Bromobutyl 2244	100 phr	>260∆	>280∆	>320∆	150	180	50	100	100	210
	Hi Sil 233	15 phr	>1.79∆	>1.93∆	>2.21∆	1.03	1.24	0.34	0.69	0.69	1.45
Aliphatic Oil	Bromobutyl 2244	100 phr	>300∆	>300∆	>260∆	130	150	60	80	80	130
	Aliphatic Oil	20 phr	>2.07∆	>2.07∆	>1.79∆	0.90	1.03	0.41	0.55	0.55	0.90
Naphthenic Oil	Bromobutyl 2244	100 phr	>130∆	>140∆	>140∆	80	>110∆	40	60	60	130
	Naphthenic Oil	15 phr	>0.90∆	>0.97∆	>0.97∆	0.55	>0.76∆	0.28	0.41	0.41	0.90
Processing Aid	Bromobutyl 2244	100 phr	140	>180∆	>180∆	100	130	30	80	60	130
	Struktol 40 MS	10 phr	0.97	>1.24∆	>1.24∆	0.69	0.90	0.21	0.55	0.41	0.90
Antistatic	Bromobutyl 2244	100 phr	>170∆	>190∆	>180∆	>130∆	>140∆	40	80	60	130
	Armostat 550	5 phr	>1.17∆	>1.31∆	>1.24∆	>0.90∆	>0.97∆	0.28	0.55	0.41	0.90
NOTES: \Box = The add \Box = The add Δ = The forc adhesive	tion of the indicate tition of the indicate e applied to the tes e could be determin	d additive d additive it specime ied.	(or processing cha e (or processing cha ens exceeded the st	inge) caused a stainge) caused a stainge) caused a statength of the mate	atistically significant atistically significant erial resulting in sul	increase in the b decrease in the t ostrate failure bef	ond strength within ond strength withli ore the actual bond	95% confidence lir 95% confidence li strength achieved	mits. Cure in Al mits. Stearc zinc o by the Magitt Sultur TMTD	: System Used I Formulations Acid Mide e D	1.00 phr 5.00 phr 0.50 phr 2.00 phr 1.00 phr

Hydrogenated Nitrile Rubber (H-NBR, HSN)

thermoset rubber

Trade Names

Manufacturer

TherbanZetpol

Bayer Zeon Chemical

General Description

Nitrile elastomer is produced through the emulsion copolymerization of butadiene and acrylonitrile monomer. Selective hydrogenation is then performed in a solvent with a noble metal catalyst to yield highly saturated hydrogenated nitrile polymer.

General Properties

Due to the aliphatic nature of the backbone, the thermal and chemical resistance are much improved over that of nitrile rubber. Hydrogenated nitriles are known for their exceptional oil, gasoline and solvent resistance, tensile properties and extreme temperature performance. These properties, coupled with their good abrasion and water resistance, make them suitable for a wide variety of applications. Hydrogenated nitriles react to filler loading, plasticizer loading and acrylonitrile content in much the same manner as unsaturated nitriles, except that the physical properties of hydrogenated nitriles are higher. The acrylonitrile content determines the performance characteristics of the rubber. For superior tensile properties and oil resistance, a high level of acrylonitrile should be used. If low temperature performance is more important, a low acrylonitrile level is more appropriate. Fillers can also be used to increase the performance of hydrogenated nitriles. The addition of carbon black and/or mineral fillers will increase the hardness at the cost of decreased elongation. These relationships occur in an almost linear fashion. Fillers can also be used to increase the tensile strength of halogenated nitriles, however, the effect is not as clear. Normally, the tensile strength will increase to a maximum and begin decreasing. Another way to increase the strength, particularly the abrasion resistance, is to carboxylate the polymer. This produces carboxylic acid groups on the backbone which form additional cross-link sites during vulcanization. These additional cross-link sites increase the cross-link density of the resulting nitrile elastomer which, consequently, increases the strength as well. To increase the heat resistance of nitrile elastomers, antioxidants may be permanently bound into the polymer molecule. Since the antioxidants cannot evaporate or be extracted by solvents, this dramatically prolongs the useful life of the material.

Typical Applications

- Automotive Lip seals, valve-stem seals, o-rings, gaskets
- Industrial Oil field valve seals, o-rings, piston cups, annular blowout preventers

Relative Adhesive Performance

- High Methyl CA Loctite® 496[™] Super Bonder® Instant Adhesive Surface Insensitive CA - Loctite® 401[™] Prism® Instant Adhesive Primer - Loctite® 401[™] Prism® Instant Adhesive with Loctite® 770[™] Prism® Primer
 Rubber Toughened CA - Loctite® 480[™] Prism® Instant Adhesive
 Rubber Toughened CA - Loctite® 4204[™] Prism® Instant Adhesive
 Light Curing Acrylic - Loctite® 3105[™] Light Cure Adhesive
- Medium Two-Part No-Mix Acrylic Loctite® 330[™] Depend® Adhesive
- Low Acetoxy Silicone Loctite[®] Superflex[®] RTV Silicone Adhesive Sealant Oxime Silicone - Loctite[®] 5900[®] Flange Sealant, Heavy Body

Effects of Formulation and Processing

- Additives
 Low Acrylonitrile Decrease
 Carbon Black Decrease
 Silica Increase
 Antistat Decrease
- T₈₀ Cure No Trend Apparent

Surface Treatments

Loctite[®] 770[™] Prism[®] Primer – Decrease

			Loctite® 3105™ Light Cure Adhesive	1050 <mark>7.24</mark>	660 4.55	350 2.41	480 3.31	1050 7.24	770 5.31	1050 <mark>7.24</mark>	6.00 phr 1.50 phr 1.50 phr 2.00 phr 8.25 phr
			Loctite® 330 th Depend® Adhesive	220 1.52	170 1.17	180 1.24	110 0.76	340 2.34	220 1.52	160 1.10	System Used I Formulations vide tot 445 ZMTI I WB212 p 40KE
			Loctite [®] 5900 [®] Flange Sealant, Heavy Body	150 1.03	150 1.03	120 0.83	100 0.69	210 1.45	200 1.38	130 0.90	ts. Cure its. in All lits. Zinc O Naupa Vanox Strukt
-			Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	50 0.34	60 0.41	50 0.34	40 0.28	50 0.34	100 0.69	50 0.34	95% confidence limi 95% confidence lim strength achieved b
ENGTH			Loctite [®] 4204 ^m Prism [®] Instant Adhesive	770 5.31	>990∆ >6.83∆	>770∆ >5.31∆	>490∆ >3.38∆	>770∆ >5.31∆	>770∆ >5.31∆	>400∆ >2.76∆	nd strength within 9 ond strength within re the actual bond 9
AR STR	(psi) (MPa)	Chemical	Loctite [®] 480 [™] Prism [®] Instant Adhesive	>500∆ >3.45∆	>830∆ >5.72∆	>500∆ >3.45∆	>500∆ >3.45∆	500 3.45	>880∆ >6.07∆	500 3.45	increase in the bo decrease in the bc strate failure befo
/E SHE/			Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	280 <mark>1.93</mark>	280 1.93	>960∆ >6.62∆	>430∆ >2.97∆	420 <mark>2.90</mark>	>750∆ >5.17∆	400 2.76	ted additive (or processing change) caused a statistically significant ted additive (or processing change) caused a statistically significant set specimens exceeded the strength of the material resulting in sub ined.
HESIV		tpol by Zeon	Loctite [®] 401 [™] Prism [®] Instant Adhesive	>1060∆ >7.31∆	>1060∆ >7.31∆	>700∆ >4.83∆	>500∆ >3.45∆	>1240∆ <mark>>8.55</mark> ∆	>1060∆ >7.31∆	410 <mark>2.83</mark>	
AD		er zei	Loctite [®] 496 ^m Super Bonder [®] Instant Adhesive	>930∆ >6.41∆	>930∆ >6.41∆	>760∆ >5.24∆	>530∆ >3.66∆	710 4.90	>660∆ >4.55∆	400 2.76	
		Subbei	ves	100 phr	100 phr	100 phr	100 phr 50 phr	100 phr 50 phr	100 phr 25 phr	100 phr 5 phr	
		ed Nitrile	nd Adhesi	120 ration	Zetpol 0020 ull Cure	Zetpol 2000L ation	Zetpol 0020 N-339	Zetpol 0020 Hi Sil 255	Zetpol 0020 Dibutyl Phthalate	Zetpol 0020 Armostat 550	addition of the indica addition of the indica force applied to the te sive could be determ
		Hydrogenate	Loctite [®] Bra	Control: Zetpol 00 50% Acrylonitrile, 10% unsatu	T-80 CUre Cured to 80% of Modulus at F	Low Acrylonitrile 37% Acrylonitrile, 5% unsatura	Carbon Black	Silica	Plasticizer	Antistatic	NOTES: \Box = The <i>i</i> \Box = The <i>i</i> Δ = The <i>f</i> adhe
Melt Processible Rubber (MPR)

thermoplastic elastomer

Trade Names

Alcryn

Manufacturer

DuPont

General Description

Melt processible rubber is a single phase polymer alloy. The first and only commercially available single phase MPR was developed by DuPont and is known exclusively by the trade name Alcryn. It is a blend of ethylene interpolymers, chlorinated polyolefins with partial cross-linking of the ethylene components, plasticizers and fillers. Hydrogen bonding between the ethylene interpolymers and the chlorinated polyolefins is achieved by incorporating the proper functional groups on the ethylene interpolymer. The strong resulting attraction between the two polymer species enables Alcryn to function as a single phase system. Alcryn can be processed by typical methods used for thermoplastics such as extrusion, injection molding, calendering, vacuum forming and blow molding. Alcryn does not melt, but softens above 300°F (149°C) enough to be molded with sufficient shear and pressure.

General Properties

Alcryn is a very soft rubber with a suppleness and feel similar to vulcanized rubber. The key benefits offered by Alcryn are oil resistance, good heat aging resistance and weatherability. Alcryn shows good resistance to hydrocarbon-based oils, as well as lithium- and silicone-based greases. In solvents and fuels, Alcryn has poor resistance to aromatic and chlorinated structures. Alcryn offers excellent property retention when exposed to water and aqueous solutions of inorganic acids up to 212°F (100°C). However, mineral acids degrade Alcryn, especially at elevated temperatures. It has a (continuous recommended) service temperature ranging from -40 to 225°F (-40 to 107°C). This is typical of many of the non-vulcanized elastomers. While Alcryn exhibits good property retention in this range, its low crystallinity and lack of a vulcanizate phase make it prone to unacceptable compression set at elevated temperatures. Alcryn is thermally stable below 360°F (182°C) but degrades above 400°F (204°C) to evolve hydrochloric acid. Alcryn has shown good property retention in both long-term exposure to outdoor weathering and simulated aging environments.

Typical Applications

- Construction Weatherstripping
- Electrical Wire and cable jackets, electrical boots
- Industrial Seals, gaskets, tubing, hoses, conveyor belts, coated fabrics
- Miscellaneous Suction cups, athletic field markers

Relative Adhesive Performance

- High Surface Insensitive CA - Loctite® 401[™] Prism[®] Instant Adhesive Primer - Loctite® 401[™] Prism® Instant Adhesive with Loctite® 770[™] Prism[®] Primer Rubber Toughened CA - Loctite® 4204[™] Prism[®] Instant Adhesive
- Methyl CA Loctite[®] 496[™] Medium Super Bonder[®] Instant Adhesive Rubber Toughened CA - Loctite® 480[™] Prism[®] Instant Adhesive Oxime Silicone - Loctite® 5900® Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite® 330[™] Depend[®] Adhesive Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive
- Acetoxy Silicone Loctite[®] Superflex[®] Low **RTV Silicone Adhesive Sealant**

Effects of Formulation and Processing

 Additives Titanium Dioxide - Increase Colorant - Decrease

Surface Treatments

			Loctite [®] 3105 [™] Light Cure Adhesive	540 <mark>3.72</mark>	540 3.72	540 3.72	360 2.48	130 <mark>0.90</mark>	350 <mark>2.41</mark>	200 1.38	>270∆ >1.86∆	- 0
			Loctite [®] 330 [™] Depend [®] Adhesive	230 1.59	230 1. <mark>59</mark>	150 1.03	230 1.59	150 1. <mark>03</mark>	120 <mark>0.83</mark>	120 <mark>0.83</mark>	170 1.17	System Usec I Formulation Required
			Loctite* 5900* Flange Sealant, Heavy Body	170 1.17	170 1.17	170 1.17	170 1.17	140 <mark>0.97</mark>	150 1. <mark>03</mark>	170 1.17	110 0.76	s. Is. None the
-			Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	60 0.41	10 0.07	20 0.14	<10 <0.07	40 0.28	<10 <0.07	30 0.21	10 0.07	5% confidence limit 95% confidence limi strength achieved by
RENGTH			Loctite [®] 4204 [™] Prism [®] Instant Adhesive	370 2.55	370 2.55	370 2.55	>450∆ >3.10∆	250 1.72	180 1.24	300 2.07	110 0.76	nd strength within 5 and strength within re the actual bond s
AR STF			Loctite [®] 480 [™] Prism [®] Instant Adhesive	190 1.31	360 2.48	190 1.31	370 2.55	180 1.24	240 1.65	240 <mark>1.65</mark>	80 0.55	increase in the bo decrease in the bo strate failure befo
'E SHE	sq) MP		Loctite [®] 401 [™] Prism [®] Instant Adhesive with Loctite [®] 770 [™] Prism [®] Primer	>590∆ >4.07∆	>590∆ >4.07∆	>390∆ >2.69∆	>400∆ >2.76∆	>700∆ >4.83∆	320 <mark>2.21</mark>	>540∆ > <mark>3.72</mark> ∆	>250∆ >1.72∆	stically significant stically significant al resulting in sub
DHESIV		DuPont	Loctite [®] 401 ^m Prism [®] Instant Adhesive	>470∆ > <mark>3.24</mark> ∆	>640∆ >4.41∆	>320∆ >2.21∆	>360∆ >2.48∆	>680∆ >4.69∆	>400∆ >2.76∆	>550∆ > 3.79 ∆	250 1.72	nge) caused a stati nge) caused a stati ength of the materi
AD		Alcryn by I	Loctite [®] 496 ^m Super Bonder [®] Instant Adhesive	250 <mark>1.72</mark>	400 2.76	210 1.45	280 1.93	80 0.55	60 0.41	200 1.38	60 0.41	(or processing chai (or processing chai is exceeded the str
		bber	sives	100 phr	0 100 phr 30 phr	0 100 phr Iow dye 6 phr	5 phr	100 phr	100 phr	100 phr	100 phr	cated additive of cated additive of additive of the steet specimen rmined.
		ible Ru	nd Adhe	0 NC	Alcryn 2070 N(TIO2	Alcryn 2070 N(PVC-based yell	Alcryn 2070 N(Armostat 550					lition of the indi lition of the indi ce applied to the e could be deter
		Melt Process	Loctite [®] Bran	Control: Alcryn 207	Titanium Dioxide	Colorant	Antistatic	Alcryn 1070 BK	Alcryn 2070 BK	Alcryn 2265 UT	Alcryn 3055 NC	NOTES: \Box = The adc \Box = The adc \Box = The adc Δ = The forc adhesiv

Natural Rubber (NR)

thermoset rubber

International Types of Natural Rubber

- Compo Crepe
- Estate Brown Crepe
- Flat Bark Crepe
- Pale Crepe
- Pure Smoked Blanket Crepe
- Ribbed Smoked Sheet
- Thick Blanket Crepe
- Thin Brown Crepe

General Description

Natural rubber is created by processing the latex of Hevea brasiliensis. Hevea brasiliensis is a plant indigenous to the Amazon valley and is the only known plant to produce high molecular weight linear polymer with 100% cis 1,4 polyisoprene. The average dry weight of latex is normally between 30 and 35%, typically ranging from 25 to 45%. To obtain the latex, the tree is "tapped". This is the process of cutting the bark back in thin sections so that the latex flows. The latex is then collected, treated with a stabilizer to prevent premature coagulation and brought to a processing center. The collection and processing technique determines the grade of natural rubber. There are eight different types of natural rubber which are then classified into 35 technically specified international grades. The grade indicates the color, cleanliness, presence of bubbles and uniformity of appearance.

General Properties

Rapid crystallization on stretching gives natural rubber its exceptional tensile strength, tear strength and abrasion resistance properties. The tensile strength of unfilled vulcanates ranges from 2,500 to 3,500 psi (17 to 24 MPa), while fillers can increase that in excess of 4,500 psi (31 MPa). The resilience of natural rubber is excellent. At large strains, the fatigue life of natural rubber is better than SBR. At low strains, the opposite is true. The strength characteristics of natural rubber decrease with increasing temperature. However, the strength at temperature of natural rubber is normally superior to that of other elastomers. Natural rubber has very good processing properties and can be processed by a variety of different techniques. Conventional processing yields natural rubber with excellent initial properties such as strength, abrasion resistance and fatigue resistance. The thermal resistance, creep and stress-relaxation properties of conventionally

processed natural rubber are not as desirable. To increase the thermal stability and improve the low compression set, an efficient (EV) accelerated sulfur vulcanization system can be used. A semi-EV system can be used to help trade off the increase in cost with the increase in performance.

Typical Applications

- Industrial Hoses, conveyor belts, gaskets, seals
- Engineering Springs, mountings, bushings
- Latex Gloves, condoms, carpet backing, threads

Relative Adhesive Performance

- High Surface Insensitive CA Loctite® 401[™] Prism® Instant Adhesive Primer - Loctite® 401[™] Prism® Instant Adhesive with Loctite® 770[™] Prism® Primer Light Curing Acrylic - Loctite® 3105[™] Light Cure Adhesive
- Medium Methyl CA Loctite® 496[™] Super Bonder® Instant Adhesive Rubber Toughened CA - Loctite® 480[™] Prism® Instant Adhesive Rubber Toughened CA - Loctite® 4204[™] Prism® Instant Adhesive
- Low Acetoxy Silicone Loctite[®] Superflex[®] RTV Silicone Adhesive Sealant Oxime Silicone - Loctite[®] 5900[®] Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite[®] 330[™] Depend[®] Adhesive

Effects of Formulation and Processing

- Additives Carbon Black Increase Calcium Carbonate - Increase Clay - Increase Antistatic - Increase CA
- T₈₀ Cure No Trend Apparent

Surface Treatments

(MPa)	bber Standard Malaysian Rubber (SMR)	and Adhesives Loctite [®] Loctite [®] Loctite [®] Loctite [®] A01 ^m Prism [®] Loctite [®] Loctite [®] Super Loctite [®] Super Loctite [®] Super Loctite [®] Super Loctite [®] Loctite [®] Super Loctite [®] Loctite [®] Super Loctite [®] Loctite [®] Loctite [®] Loctite [®] Super Loctite [®]	SMR-5 TOO phr 160 >300^A >270^A 130 140 30 50 40 230 1.10 >2.07^A >1.86^A 0.90 0.97 0.21 0.34 0.28 1.59	SMR-5 TOO phr 160 >300A >270A130 140 40 50 40 230 t Full Cure 1.10 >2.07A >1.86A 0.90 0.97 0.28 0.34 0.28 1.59	SMR-10 100 phr >200A >300A >200A 130 140 30 50 40 70 >1.38A >1.38A >2.07A >1.38A 0.90 0.97 0.21 0.34 0.48 0.48	SMR.5 TOO phr 470 490 >470 ^A 200 270 40 110 80 240 N-550 25 phr 3.24 3.38 >3.24 ^A 1.38 1.86 0.28 0.76 0.55 1.66	ate sMR-5 100 phr 300 300 >390 ^A 190 230 60 10.0 m 2.07 2.09 ^A 1.31 1.59 0.41 0.83 0.55 0.76 0.76	SMR-5 100 phr 290 300 270 170 140 40 130 100 240 MoNamee Clay 100 phr 2.00 2.07 1.86 1.17 0.97 0.28 0.90 0.69 1.66	SMR-5 100 phr 250 >300A 270 130 140 30 80 40 60 Hi SII 233 15 phr 1.72 >2.07Å 1.86 0.90 0.97 0.21 0.55 0.28 60	SMR-5 100 phr 160 300 >270 ^A 190 140 40 50 40 230 Naphthenic OI 10 phr 1.10 2.07 >1.86 ^A 1.31 0.97 0.28 40 230 230	SMR-5 100 phr 160 >300^A >270^A 130 140 30 40 40 50 Polyethylene 1702 4 phr 1.10 >2.07^A >1.86^A 0.90 0.97 0.21 0.28 0.34	SMR-5 100 phr >2800 >6600 >2700 130 140 40 50 40 80 Santoflex 13 3 phr >1.93A >4.55A >1.86A 0.90 0.97 0.28 0.34 0.55	SMR-5 TOD phr >240 ^A 300 >270 ^A >360 ^A >280 ^A 30 50 40 230 Armostat 550 5 phr >1.66 ^A 2.07 >1.86 ^A >2.48 ^A >1.93 ^A 0.21 0.34 0.28 1.59	addition of the indicated additive (or processing change) caused a statistically significant increase in the bond strength within 95% confidence limits. addition of the indicated additive (or processing change) caused a statistically significant decrease in the bond strength within 95% confidence limits. force applied to the test specimens exceeded the strength of the material resulting in substrate failure before the actual bond strength achieved by the solution.
	Natural Rubber Stand	Loctite [®] Brand Adhes	Control: SMR-5 SMR-5	T ₈₀ Cure sMR-5 Cured to 80% of Modulus at Full Cure	SMR-10 SMR-10	Carbon Black sMR-5 N-550	Calcium Carbonate SMR-5 Calcium Carbona	Clay SMR-5 McNamee Clay	Silica SMR-5 Hi SII 233	Naphthenic Oil SMR-5 Naphthenic Oil	Processing Aid SMR-5 Polyethylene 1702	Antiozonant SMR-5 Santoflex 13	Antistatic SMR-5 Armostat 550	NOTES: \Box = The addition of the indica \Box = The addition of the indica Δ = The force applied to the t adhesive could be determ

Neoprene Rubber (Polychloroprene, CR)

thermoset rubber

Trade Names

Manufacturer

Baypren

Bayer

- Butaclor
- **Enichem Elastomers**

DuPont

• Neoprene

General Description

Polychloroprene is manufactured by the emulsion polymerization of 2-chloro-1,3 butadiene monomer and can be modified with sulfur and/or 2,3 dichloro-1,3butadiene (ACR). The final structure and performance properties of the rubber are determined by three variables: the addition of chain transfer agents during the polymerization process; quenching the reaction through the addition of stabilizers; and breaking down the gel formed during the polymerization process through peptization. Consequently, the manufacturing technique used will strongly influence the performance properties of the resulting rubber.

General Properties

Neoprene offers better resistance to oxidation, ozone, weathering, water, oil and fuel than natural rubber. Although neoprene does not have any performance properties that are particularly outstanding, it does offer a good balance of various properties. The selection of the gum stock will determine the range of properties which can be attained in the final rubber. The cure method and selection of type and level of fillers, plasticizers, processing aids and antioxidants will determine where the properties will fall in that range. The differences between the most common grades used for molded assemblies can be explained in terms of their processing differences. Neoprene GN, for example, is produced by polymerizing chloroprene monomer in the presence of elemental sulfur. The resulting polymer is then broken down through peptization. This yields a rubber with the best tear strength, flex and resiliency. On the other hand, the T and W types of neoprene cannot be peptized, but offer superior stability in the uncured form as well as better heat aging and compression set resistance when cured. The T and W types of neoprene are similar but principally differ in terms of nerve, with the T type having much less than the W. This makes it much more suitable for extrusion and calendering processes. In general, neoprenes also offer high tensile strength, good abrasion resistance and less compression set. Neoprenes show good performance at low temperatures, although some types are more prone to crystallization than others. In recent years, the use of neoprene in automotive applications has decreased due to the demand for performance at higher temperatures.

Typical Applications

Aerospace	Gaskets, seals, deicers
Automotive	Timing belts, window gaskets, fuel hose covers, cable jacketing, spark plug boots, hoses, joint seals
Industrial	Pipeline pigs, gaskets, hoses, power transmission belts, conveyor belts, escalator handrails
 Electronics 	Wire and cable jacketing

Sponge shoe soles, foam cushions Miscellaneous

Relative Adhesive Performance

- High Methyl CA - Loctite[®] 496[™] Super Bonder[®] Instant Adhesive Surface Insensitive CA - Loctite[®] 401[™] Prism[®] Instant Adhesive Primer - Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite® 770[™] Prism[®] Primer Rubber Toughened CA - Loctite® 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite® 4204[™] Prism[®] Instant Adhesive Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive
- Medium Oxime Silicone - Loctite® 5900® Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite® 330[™] Depend[®] Adhesive
- Low Acetoxy Silicone - Loctite® Superflex® **RTV Silicone Adhesive Sealant**

Effects of Formulation and Processing

- Additives Neoprene GN - Increase Neoprene TW - Increase Carbon Black - Increase Calcium Carbonate - Increase Clay - Increase Silica - Increase Aromatic Oil - Decrease Antistat - Increase
- T₈₀ Cure Increase

Surface Treatments

		A	DHESIV	/E SHE/ (psi (MP	AR STF) a)	RENGT	-			
Polychloropre	ene Rubber	Neopren	e by DuPont							
Loctite [®] Brand	d Adhesives	S Loctite [®] 496 [™] Super Bonder [®] Instant Adhesiv	Loctite [®] 401 ^m Prism [®] e Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 480 [™] Prism [®] Instant Adhesive	Loctite [®] 4204 ^m Prism [®] Instant Adhesive	Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite [®] 5900 [®] Flange Sealant, Heavy Body	Loctite [®] 330 th Depend [®] Adhesive	Loctite® 3105™ Light Cure Adhesive
Control: Neoprene V	V 100	phr >270∆ >1.86∆	>310∆ >2.14∆	>270∆ >1.86∆	>260∆ <mark>>1.79</mark> ∆	>280∆ <mark>>1.93</mark> ∆	60 0.41	50 <mark>0.34</mark>	60 0.41	200 1.38
Tg0 Cure Cured to 80% of Modulus at Full (Neoprene W 100 Cure	phr >270∆ >1.86∆	>310∆ >2.14∆	>340∆ >2.34∆	>260∆ >1.79∆	>280∆ >1.93∆	60 0.41	80 <mark>0.55</mark>	60 0.41	>430∆ >2.97∆
Neoprene GN	Neoprene GN 100	phr >750 ∆ >5.17 △	>580∆ >4.00∆	>570∆ > 3.93 ∆	>350∆ >2.41∆	>450∆ > <mark>3.10</mark> ∆	60 0.41	110 0.76	90 <mark>0.62</mark>	630 4.34
Neoprene TW	Neoprene TW 100	phr >790 Δ >5.45 Δ	>580∆ >4.00∆	>510∆ >3.52∆	>260∆ >1.79∆	>280∆ >1.93∆	60 0.41	110 0.76	60 0.41	>440∆ >3.03∆
Carbon Black	Neoprene W 100 N-550 25	phr >800 ^Δ	>930∆ >6.41∆	>600∆ >4.14∆	>640∆ >4.41∆	>630∆ >4.34∆	60 0.41	150 1.03	100 0.69	>980∆ >6.76∆
Calcium Carbonate	Neoprene W 100 Calcium Carbonate 50	phr >330∆ phr >2.28∆	>380∆ >2.62∆	>360∆ >2.48∆	>350∆ >2.41∆	>350∆ >2.41∆	60 0.41	130 0.90	110 0.76	>540∆ >3.72∆
Clay	Neoprene W 100 Dixie Clay 100	phr 340 phr 2.34	420 2.90	350 2.41	380 2.62	380 2.62	80 0.55	180 1.24	310 2.14	>870∆ >6.00∆
Silica	Neoprene W 100 Hi Sil 233 15	phr > 700 ∆ phr > 4.83 ∆	>990∆ >6.83∆	>510∆ >3.52∆	>580∆ >4.00∆	>570∆ >3.93∆	60 0.41	130 0.90	110 0.76	>1190∆ >8.21∆
Aromatic Oil	Neoprene W 100 Aromatic Oil 20	phr >200 ∆ phr >1.38 ∆	>250∆ >1.72∆	>210∆ >1.45∆	>260∆ >1.79∆	>180∆ >1.24∆	40 0.28	50 0.34	60 0.41	>390∆ >2.69∆
Naphthenic Oil	Neoprene W 100 Naphthenic Oil 20	phr >270 ∆ phr >1.86 ∆	>310∆ >2.14∆	>270∆ >1.86∆	>260∆ >1.79∆	>280∆ >1.93∆	40 0.28	50 0.34	60 0.41	>940∆ >6.48∆
Antistatic	Neoprene W 100 Armostat 550 5	phr >270∆ phr >1.86∆	>310∆ >2.14∆	>360∆ >2.48∆	>260∆ >1.79∆	>280∆ >1.93∆	60 0.41	50 0.34	90 0.62	>460∆ >3.17∆
NOTES: \Box = The addit \Box = The addit Δ = The force adhesive	tion of the indicated add tion of the indicated add applied to the test spec could be determined.	litive (or processing c litive (or processing c cimens exceeded the	hange) caused a stati hange) caused a stati strength of the mater	istically significant i istically significant d ial resulting in subs	ncrease in the bor lecrease in the bo trate failure befor	rd strength within ind strength within e the actual bond	95% confidence limi 95% confidence lim strength achieved b	its. Cure ints. Stearic Stearic Agerite Magne Ethyler	Systems Used rene W Formu Acid kide stalite S sium Oxide e Thiourea	J in All Jations 5.00 phr 4.00 phr 0.60 phr 1.00 phr

thermoset rubber

Trade Names

Manufacturer

Huels Mexicanos

Goodyear

Mobay

Breon

B.P. Chemicals

- Chemigum
- Humex
- Krynac
- Nipol

- Polysar International Nippon Zeon Copolymer Rubber
- Nysen
- Perbunan

General Description

Nitrile elastomers are produced via the copolymerization of butadiene and acrylonitrile monomers. The properties of the resulting elastomer are dependent on the acrylonitrile/butadiene ratio of the elastomer. The acrylonitrile content typically ranges from 15 to 50%. Although thiazole and sulfenamide cure systems (the cure systems typically used to process SBR and natural rubber) can be used to vulcanize nitrile rubber, thiurams and peroxides are normally the preferred cure systems due to the increased thermal resistance.

General Properties

Nitriles are known for their superior high and low temperature performance and their exceptional oil, gasoline and solvent resistance. These properties, coupled with their good abrasion resistance, water resistance and compression set make them suitable for a wide variety of applications. Their thermal resistance allows them to be used at service temperatures ranging from -49 to 300°F (-45 to 149°C). Since the monomer ratio has a large effect on the properties of the elastomer, the ratio is dictated by its end use. For superior tensile properties or oil resistance, a high level of acrylonitrile should be used. If low temperature performance is paramount, a low acrylonitrile level is more appropriate. Fillers can also be used to increase the performance of nitrile elastomers. The addition of carbon black and/or mineral fillers will increase the hardness at the cost of decreased elongation. These relationships occur in an almost linear fashion. Fillers can also be used to increase the tensile strength of nitrile elastomers, however, the effect is not as clear. Normally, the tensile strength will increase to a maximum at approximately 50 phr of reinforcing filler and begin decreasing. Another way to increase the strength, particularly the abrasion resistance, is to carboxylate the polymer to form carboxylated nitrile rubber (XNBR). This produces carboxylic acid groups on the backbone which form additional cross-link sites during vulcanization. These additional cross-link sites increase the cross-link density of the resulting elastomer thereby increasing its strength. To increase

the heat resistance of nitrile elastomers, antioxidants may be permanently bound into the polymer molecule. Since the antioxidants cannot evaporate or be extracted by solvents, this dramatically prolongs the useful life of the material. Hydrogenated nitrile rubbers are also available which contain little or no unsaturated groups in the polymer backbone. These elastomers show improved resistance to severe environments and are covered in more detail in a separate chapter.

Typical Applications

 Automotive 	Seals, hoses, tubing, belts, electrical jacketing, gaskets
Consumer	Shoe products, coated fabrics, flooring
 Miscellaneous 	Adhesives, cements, PVC and

ABS additive

Relative Adhesive Performance

• High	Methyl CA - Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive Surface Insensitive CA - Loctite [®] 401 [™] Prism [®] Instant Adhesive Primer - Loctite [®] 401 [™] Prism [®] Instant Adhesive with Loctite [®] 770 [™] Prism [®] Primer Rubber Toughened CA - Loctite [®] 480 [™] Prism [®] Instant Adhesive Rubber Toughened CA - Loctite [®] 4204 [™] Prism [®] Instant Adhesive
Medium	Oxime Silicone - Loctite® 5900® Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite® 330™ Depend® Adhesive Light Curing Acrylic - Loctite® 3105™ Light Cure Adhesive
• 1 0\W	Acetoxy Silicone - Loctite® Superflex®

LOW **RTV Silicone Adhesive Sealant**

Effects of Formulation and Processing

- Additives Low Acrylonitrile - Decrease Carboxylated - Increase Carbon Black - Increase Clay - Increase Silica - Increase Plasticizer - Decrease
- T₈₀ Cure Decrease

Surface Treatments

			AC	HESIV	/E SHE/ (psi (MP	AR STR	RENGT	Ŧ			
Nitrile Rubbe	Chemig	lum by	Goodyear								
Loctite [®] Bran	d Adhesiv	ves	Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	Loctite [®] 401 [™] Prism [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 480 [™] Prism [®] Instant Adhesive	Loctite [®] 4204 ^m Prism [®] Instant Adhesive	Loctite [®] Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite [®] 5900 [®] Flange Sealant, Heavy Body	Loctite® 330 th Depend® Adhesive	Loctite® 3105™ Light Cure Adhesive
Control: Chemigum	N687B 33% Acrylonitrile	100 phr	>260∆ >1.79∆	>290∆ >2.00∆	>290∆ >2.00∆	220 <mark>1.52</mark>	>240∆ <mark>>1.66</mark> ∆	60 0.41	130 <mark>0.90</mark>	240 1.66	>240∆ >1.66∆
Tg0 Cure Cured to 80% of Modulus at Full	Chemigum N687B Cure	100 phr	>260∆ >1.79∆	>290∆ >2.00∆	>240∆ >1.66∆	220 1. <mark>52</mark>	>240∆ >1.66∆	60 0.41	130 0.90	150 1.03	240 1.66
Low Acrylonitrile	Chemigum N984B 20% Acrylonitrile	100 phr	>260∆ >1.79∆	>290∆ >2.00∆	>260∆ >1.79∆	>170∆ >1.17∆	>200∆ >1.38∆	50 0.34	130 0.90	130 0.90	240 1.66
High Acrylonitrile	Chemigum 386B 40% Acrylonitrile	100 phr	>260∆ >1.79∆	>290∆ >2.00∆	>290∆ >2.00∆	270 1.86	>300∆ >2.07∆	60 0.41	130 0.90	170	240 1.66
Carboxylated	Chemigum NX775	100 phr	>280∆ >1.93∆	>290∆ >2.00∆	>290∆ >2.00∆	280 1.93	>270∆ >1.86∆	90 0.62	130 0.90	250 1.72	430 2.97
Carbon Black	Chemigum N687B FEF N-550	100 phr 60 phr	>360∆ >2.48∆	>450∆ >3.10∆	>370∆ >2.55∆	>340∆ >2.34∆	>370∆ >2.55∆	100 0.69	200 1.38	280 1.93	240 1.66
Clay	Chemigum N687B Dixie Clay	100 phr 120 phr	300 2.07	>290∆ >2.00∆	>330∆ >2.28∆	>310∆ >2.14∆	>300∆ >2.07∆	80 0.55	190 1.31	>330∆ >2.28∆	530 3.66
Silica	Chemigum N687B Hi Sil 233	100 phr 30 phr	>970∆ >6.69∆	>950∆ >6.55∆	>710∆ >4.90∆	670 4. <mark>62</mark>	>680∆ >4.69∆	60 0.41	190 1.31	240 1.66	240 1.66
Plasticizer	Chemigum N687B Dibutyl Phthalate	100 phr 15 phr	>210∆ >1.45∆	>290∆ >2.00∆	>250∆ >1.72∆	>240∆ >1.66∆	>200∆ >1.38∆	40 0.28	130 0.90	110 0.76	>240∆ >1.66∆
Processing Aid	Chemigum N687B Strurktol WB-16	100 phr 2.5 phr	>260∆ >1.79∆	>290∆ >2.00∆	>240∆ >1.66∆	>220∆ >1.52∆	>240∆ >1.66∆	70 0.48	130 0.90	180 1.24	>240∆ >1.66∆
Antistatic	Chemigum N687B Armostat 550	100 phr 5 phr	>210∆ >1.45∆	>290∆ >2.00∆	>220∆ >1.52∆	>220∆ >1.52∆	>230∆ >1.59∆	70 0.48	100 <mark>0.69</mark>	150 1.03	240 1.66
NOTES: \Box = The add \Box = The add Δ = The forc Δ = The forc adhesive	lition of the indicated lition of the indicated applied to the test e could be determine	d additive d additive : specimer ed.	(or processing char (or processing char (or processing the strut	ige) caused a stati ige) caused a stati ength of the materi	stically significant i stically significant c ial resulting in subs	ncrease in the bor lecrease in the bo trate failure befor	nd strength within and strength within re the actual bond	95% confidence limi 95% confidence lirr strength achieved b	Its. Cure in Al ints. Steard Zinc C Agent Rubbe Accele	System Used I Formulations c Acid Mate Statte S Maker's Sulfur erator MBTS	1.50 phr 5.00 phr 1.55 phr 1.55 phr 1.50 phr

Polyether Block Amide (PEBA)

thermoplastic elastomer

Trade Names

Manufacturer

Pebax

Arkema Inc.

General Description

Polyether block amide (PEBA) is a thermoplastic elastomer formed via the copolymerzation of polyether and polyamide. The PEBA resin family is commonly referred to by the trade name Pebax. PEBA is a two-phase linear chain of polyamide segments interconnected with flexible polyether segments. Hence, PEBA is a flexible polyamide without plasticizers.

General Properties

The core characteristics of PEBA include outstanding flexibility and impact resistance at wide range of temperatures, its low density, high elastic memory, and superior chemical resistance. It is melt processable and accepts various colors, filler, and reinforcement systems.

PEBA is available in a variation of durometers from 70 Shore A to 72 Shore D. This thermoplastic elastomer has high load bearing capabilities, high tensile strength, good hydrolytic stability, and is biocompatible and chemically resistant, with high mechanical properties. PEBA has low water absorption, although it can be formulated for high absorption and can be welded and sterilized.

Typical Applications

- Industrial Conveyor belts, gears, packaging
- Medical Catheters, surgical gowns, bags
- Consumer Sportswear, clothing

Relative Adhesive Performance

- Cyanoacrylates, Epoxies, Urethanes High
- Medium Acrylics, Reactive Urethane Hot Melt
- Low Silicones, Hot Melts

Relative Resin Performance

- High 7233, 6333
- Medium 5533
- 4033, 2533 Low

Surface Treatments

- Loctite[®] 770[™] Prism[®] Primer No Trend Apparent
- Loctite[®] 793[™] Prism[®] Primer Increase

	AL	DHESIV	/E SHE	AR STF	RENGT	_			
ADHESIVE CHEMISTRY CATEGORY	LIGHT CURE ACRYLIC			EPO	XIES			FLEXIBLE CYAN	VOACRYLATES
Loctite [®] Brand Industrial Adhesive	Loctite [®] 3105 ^m Light Cure Adhesive	Loctite [®] E-00CL [™] Hysol [®] Epoxy Adhesive	Loctite [®] E-90FL [™] Hysol [®] Epoxy Adhesive	Loctite [®] E-30CL [™] Hysol [®] Epoxy Adhesive	Loctite [®] E-20HP ^{IM} Hysol [®] Epoxy Adhesive	Loctite [®] E-40FL ^m Hysol [®] Epoxy Adhesive	Loctite [®] E-214HP ^{III} Hysol [®] Epoxy Adhesive	Loctite [®] 4851 [™] Prism [®] Instant Adhesive	Loctite [®] 4861 [™] Prism [®] Instant Adhesive
Loctite® Brand Medical Adhesive	Loctite [®] 3311 ^m Light Cure Adhesive			Loctite [®] M-31CL ^m Hysol [®] Medical Device Epoxy Adhesive	Loctite [®] E-21HP ^{III} Hysol [®] Medical Device Epoxy Adhesive			Loctite® 4851 ^m Prism [®] Instant Adhesive	Loctite [®] 4861 [™] Prism [®] Instant Adhesive
Pebax 6333	240	535	695	365	635	295	200	915	680
Pebax 7233	180	495	445	430	380	385	285	815	625∆
Pebax 4033	225	210	165	140	115	09	09	135	260
Pebax 5533 Pebax 2533	615 100	225 170	670 100	520 120	395 40	415 40	355 60	445 395∆	595 490∆
ADHESIVE CHEMISTRY CATEGORY			CYANDAG	CRYLATES			FLASHCURE [®] CYANOACRYLATE	SILIC	DNES
Loctite® Brand Industrial Adhesive	Loctite [®] 401 [™] Prism [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 793 ^m Prism [®] Primer	Loctite [®] 414 ^m Super Bonder [®] Instant Adhesive	Loctite [®] 480 ^m Prism [®] Instant Adhesive	Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	Loctite" 4305 ^m Flashcure" Light Cure Adhesive	Loctite [®] 5900 [®] Flange Sealant	Loctite [®] Superflex [®] RTV
Loctite [®] Brand Medical Adhesive	Loctite [®] 4011 [™] Prism [®] Medical Device Instant Adhesive	Loctite [®] 4011 th Prism [®] Medical Device Adhesive with Loctite [®] 7701 th Prism [®] Primer					Loctite® 4305™ Flashcure® Light Cure Adhesive		
Pebax 6333	840∆	630	0 85 ∆	290∆	480 ∆	670	680	661	122
Pebax 7233	1030∆	750	1275∆	⊽069	520	680	845	116	107
Pebax 4033	395	485	690 ∆	645∆ 00-1	06	95	625	107	61
Pebax 2533 Pebax 2533	580∆ 455∆	910≏ 305∆	830∆ 505∆	∠85∆ 460∆	440 310	455 275∆	405	49	37 37
ADHESIVE CHEMISTRY CATEGORY		ACR	VLICS			HOT MELTS		MF	10
Loctite [®] Brand Industrial Adhesive	Loctite [®] H3000 ^m Spredbonder ^m Adhesive	Loctite [®] H4500 [™] Speedbonder [™] Structural Adhesive	Loctite [®] 3030 [™] Adhesive	Loctite [®] 330 [™] Depend [®] Adhesive	Loctife [®] 3631 ^m Hysol [®] Reactive Urethane Hot Melt Adhesive	Loctite [®] 7804 [™] Hysol [®] Hot Melt Adhesive	Loctite [®] 1942 ^m Hysol [®] Hot Melt Adhesive	Loctite [®] Fixmaster [®] Epoxy Adhesive	Loctite [®] Fixmaster [®] Rapid Rubber Repair Urethane Adhesive
Loctite® Brand Medical Adhesive									
Pebax 6333	280	594	436	201	902	158	164	335	493
Pebax 7233	185	326	193	228	947	174	159	198	550
Pebax 4033 Pehay 5533	116	349 864	162 592	207 377	375 870	46 175	51	331	483 511
Pebax 2533	69	133	128	76	192	128	95	100	309

Δ = The force applied to the test specimens exceeded the strength of the material resulting in substrate failure before the actual bond strength achieved by the adhesive could be determined. NOTES:

Polyacrylate Rubber (ACM)

thermoset rubber

Trade Names

Manufacturer

- Europrene
- B.F. Goodrich
- Hycar
- HyTemp

Enichem Elastomers America

Zeon Chemical

General Description

Polyacrylate rubber is produced by polymerizing acrylic monomers. Since acrylic monomer only contains a single double bond, polyacrylate rubber has a saturated or aliphatic backbone. A comonomer is required if vulcanization is desired because, otherwise, the polymer would lack the reactive species necessary for cross-linking. Typically, an active halogen or epoxide cure system is used to vulcanize polyacrylate rubber. Varying the size of the pendant carboxylate group on the polymer backbone has a dramatic effect on the properties of the elastomer. Acrylate rubbers are commonly reinforced with carbon black and/or silica to achieve acceptable physical properties.

General Properties

Polyacrylate rubbers belong to the family of special purpose, oil resistant rubbers which have service temperatures in excess of 300°F (149°C). The aliphatic nature of the polymer backbone results in superior performance properties highlighted by resistance to UV, thermal degradation, ozone and oxidation. The size of the pendant carboxylate group has a significant effect on the properties of the resulting polymer. Increasing the length of the alkane chain on the carboxylate group improves the low temperature properties of the polyacrylate. However, this decreases the overall polarity of the polymer which, consequently, reduces its resistance to non-polar solvents. An important characteristic of polyacrylate rubbers is compatibility with sulfur-bearing, extreme-pressure gear lubricants. The tear strength and abrasion resistance of polyacrylate rubbers are not exemplary, while the flame resistance and resistance to acids and bases are poor.

Typical Applications

- Aerospace Rocket propellant binders
- Automotive Automotive fluid seals, high pressure hoses, seals, gaskets, boots
- Miscellaneous Adhesives, caulks, hot melts

Relative Adhesive Performance

- Methyl CA Loctite[®] 496[™] High Super Bonder[®] Instant Adhesive Surface Insensitive CA - Loctite® 401[™] Prism[®] Instant Adhesive Primer - Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite® 770[™] Prism[®] Primer Rubber Toughened CA - Loctite® 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite® 4204[™] Prism[®] Instant Adhesive Two-Part No-Mix Acrylic - Loctite® 330[™] Depend[®] Adhesive Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive
- Low Acetoxy Silicone - Loctite® Superflex® **RTV Silicone Adhesive Sealant** Oxime Silicone - Loctite[®] 5900[®] Flange Sealant, Heavy Body

Effects of Formulation and Processing

- Additives Medium Alkane Chain - Decrease Long Alkane Chain - Decrease Carbon Black - Increase Synthetic Graphite - Increase Clay - Increase Silica - Increase Plasticizer - Decrease
- T₈₀ Cure Increase

Surface Treatments

		AD	HESIV	'E SHE/ (psi (MP	AR STR) a)	RENGT	-			
Polyacrylate Rub	ber HyTen	np by Zeon C	hemical							
Loctite [®] Brand Ad	dhesives	Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	Loctite [®] 401 [™] Prism [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 480 [™] Prism [®] Instant Adhesive	Loctite [®] 4204 ^m Prism [®] Instant Adhesive	Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite° 5900° Flange Sealant, Heavy Body	Loctite [®] 330 th Depend [®] Adhesive	Loctite [®] 3105 [™] Light Cure Adhesive
Control: HyTemp 4051	100 phr	>80∆	>80∆	>70∆	>70∆	>90∆	<10	60	>70∆	>110∆
short Alkane Chain		>0.55∆	>0.55∆	>0.48∆	>0.48∆	>0.62∆	<0.07	0.41	>0.48∆	>0.76∆
T80 Cure HyTem HyTem Cured to 80% of Modulus at Full Cure	p 4051 100 phr	>80∆ >0.55∆	>80∆ >0.55∆	>90∆ >0.62∆	>90∆ >0.62∆	>110∆ >0.76∆	10 0.07	70 0.48	>70∆ >0.48∆	>110∆ >0.76∆
Medium Alkane Chain Hyrem	p 4052 100 phr	>50∆ >0.34∆	>50∆ >0.34∆	>50∆ >0.34∆	>50∆ >0.34∆	>50∆ >0.34∆	<10 <0.07	50 0.34	>40∆ >0.28∆	>80∆ >0.55∆
Long Alkane Chain Hytem	p 4054 100 phr	>40∆ >0.28∆	>50∆ >0.34∆	>60∆ >0.41∆	>30∆ >0.21∆	>50∆ >0.34∆	<10 <0.07	40 0.28	>40∆ >0.28∆	>80∆ >0.55∆
Carbon Black HyTem N-550	p 4051 100 phr	>440∆	>370∆	>490∆	>380∆	>450∆	<10	110	110	350
	25 phr	>3.03∆	>2.55∆	>3.38∆	>2.62∆	>3.10∆	<0.07	0.76	0.76	2.41
Synthetic Graphite Hyrem A99 GI	p 4051 100 phr	>120∆	>140∆	>140∆	>130∆	>140∆	<10	80	>110∆	>200∆
	aphite 20 phr	>0.83∆	>0.97∆	>0.97∆	>0.90∆	>0.97∆	<0.07	0.55	>0.76∆	>1.38∆
Clay HyTem	p 4051 100 phr	>210∆	>200∆	>210∆	>200∆	>220∆	20	90	110	>280∆
Carbowax 3350 3 phr, Dikie C	lay 50 phr	>1.45∆	>1.38∆	>1.45∆	>1.38∆	>1.52∆	0.14	0.62	0.76	>1.93∆
Silica HyTem	p 4051 100 phr	>140∆	>130∆	>120∆	>140∆	>160∆	<10	60	>120∆	>210∆
Carbowax 3350 3 phr, Diethylene Glycol 2	phr, Hi Sil 233 15 phr	>0.97∆	>0.90∆	>0.83∆	>0.97∆	>1.10∆	<0.07	0.41	>0.83∆	>1.45∆
Plasticizer HyTem Parapit	p 4051 100 phr	>60∆	>70∆	>70∆	>70∆	>70∆	<10	40	30	>100∆
	ex G-25 15 phr	>0.41∆	>0.48∆	>0.48∆	>0.48∆	>0.48∆	<0.07	0.28	0.21	>0.68∆
Processing Aid HyTem Vanfre	p 4051 100 phr	>80∆	>80∆	>80∆	>70∆	>90∆	10	60	>70∆	>110∆
	A1-2 5 phr	>0.55∆	>0.55∆	>0.55∆	>0.48∆	>0.62∆	0.07	0.41	>0.48∆	>0.76∆
Antistatic Hyrem Armosi	p 4051 100 phr	>60∆	>80∆	>90∆	>70∆	>90∆	20	60	>70∆	>130∆
	at 550 5 phr	>0.41∆	>0.55∆	>0.62∆	>0.48∆	>0.62∆	0.14	0.41	>0.48∆	>0.90∆
NOTES: \Box = The addition of t \Box = The addition of t Δ = The force applies adhesive could t	he indicated additive he indicated additive of the test specime e determined.	(or processing char (or processing char ins exceeded the stre	rge) caused a stati rge) caused a stati ength of the materi	stically significant i stically significant d al resulting in subs	ncrease in the bor lecrease in the bo trate failure befor	rd strength within 9 ind strength within e the actual bond 9	5% confidence limi 95% confidence lim strength achieved b	ts. Cure in All its. NPC-5 y the Sodium	System Used Formulations	1.50 phr 1.00 phr

Polyisoprene (IR)

thermoset rubber

Trade Names

Manufacturer

 Isolene 	Hardman
Moteuro	Coodycor
• Natsyn	Goodyeal
 Nipol 	Goldsmith and Eggleton
• SKI-3	Alcan

General Description

Polyisoprene is formed via the polymerization of isoprene in a hydrocarbon solution. When the isoprene monomer is added to the backbone, it can be added in either an R or S configuration. As a result, the polymerization addition can proceed in several different ways. In isotactic addition, the monomer groups are exclusively added in the same configuration (RRRRRR). In syndiotactic addition, the monomer groups are added to the backbone in alternating configurations (RSRSRS). Finally, in atactic addition, the addition is random (RSSSRRS). Consequently, in order to create a stereoregular polymer matrix which would have physical properties similar to NR, a stereospecific catalyst is required. This stereospecific catalyst, AI-Ti, was developed in 1960 which resulted in the first commercially viable synthetic polyisoprene.

General Properties

Natural rubber and synthetic isoprene both have high tensile properties, good hysteresis and good hot tear properties. The main advantages that synthetic polyisoprenes have over natural rubbers are their increased process control and processability. These process characteristics arise from the fact that natural rubber is harvested from a natural source while synthetic polyisoprene is produced using a highly controlled manufacturing process. The primary processing benefits offered by synthetic isoprene are its increased processing speeds and extrusion values. Other advantages of synthetic polyisoprene are that it does not contain water-sensitive residues or contaminants, and it cures more consistently. In addition, synthetic polyisoprene can be used at a higher loading than natural rubber in SBR and EPDM blends. The disadvantages of synthetic polyisoprene are its decreased green strength, cure speed and aging properties when compared to NR.

Typical Applications

- Automotive Tires, motor mounts, gaskets, bushings, hoses, coatings, tubes, belts
- Consumer Rubber bands, baby bottle nipples, footwear, sporting goods, fabric threads
- Miscellaneous Adhesives, conveyors

Relative Adhesive Performance

- High Methyl CA Loctite[®] 496[™] Super Bonder[®] Instant Adhesive Surface Insensitive CA - Loctite[®] 401[™] Prism[®] Instant Adhesive Primer - Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite[®] 770[™] Prism[®] Primer Rubber Toughened CA - Loctite[®] 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite[®] 4204[™] Prism[®] Instant Adhesive
- Medium Light Curing Acrylic Loctite[®] 3105[™] Light Cure Adhesive
- Low Acetoxy Silicone Loctite® Superflex® RTV Silicone Adhesive Sealant Oxime Silicone - Loctite® 5900® Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite® 330™ Depend® Adhesive

Effects of Formulation and Processing

Additives
 Carbon Black - Increase
 Calcium Carbonate - Increase
 Clay - Decrease CA
 Clay - Increase Silicones and Acrylics
 Naphthenic Oil - Decrease
 Antioxidant - Decrease
 Antistatic - Decrease

• T₈₀ Cure No Trend Apparent

Surface Treatments

		Loctite [®] 3105 [™] Light Cure Adhesive	100 0.69	100 0.69	100 0.69	>280∆ >1.93∆	220 1.52	100 0.69	40 0.28	100 0.69	70 0.48	1.00 phr 3.00 phr 1.50 phr 2.00 phr 0.20 phr
		Loctite [®] 330 th Depend [®] Adhesive	50 0.34	40 0.28	70 0.48	70 0.48	100 0.69	60 0.41	40 0.28	40 0.28	10 0.07	System Used I Formulations Acid Mide Superlite
		Loctite [®] 5900 [®] Flange Sealant, Heavy Body	60 0.41	60 0.41	90 <mark>0.62</mark>	110 0.76	120 <mark>0.83</mark>	70 0.48	40 <mark>0.28</mark>	40 0.28	30 0.21	S. Stearlie the Agertiture Suffur Durax
Ŧ		Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	50 0.34	50 0.34	60 0.41	70 0.48	60 0.41	50 0.34	40 0.28	40 0.28	30 0.21	5% confidence limits 95% confidence limit irrength achieved by
RENGTH		Loctite [®] 4204 ^m Prism [®] Instant Adhesive	>200∆ >1.38∆	>290∆ >2.00∆	360 2.48	>200∆ >1.38∆	120 0.83	>150∆ >1.03∆	>200∆ >1.38∆	>200∆ >1.38∆	>280∆ >1.93∆	nd strength within 9 nd strength within ' re the actual bond s
AR STR		Loctite [®] 480 [™] Prism [®] Instant Adhesive	>250∆ >1.72∆	>250∆ >1.72∆	>370∆ > <mark>2.55</mark> ∆	>250∆ >1.72∆	100 0.69	170 1.17	130 0.90	>250∆ <mark>>1.72</mark> ∆	>220∆ >1.52∆	increase in the bor decrease in the bo strate failure befor
/E SHE. (ps	,	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	>290∆ >2.00∆	>290∆ >2.00∆	>480∆ >3.31∆	>290∆ >2.00∆	180 1.24	>290∆ >2.00∆	>290∆ >2.00∆	>290∆ >2.00∆	>210∆ >1.45∆	istically significant i istically significant i ial resulting in sub :
HESIV		Loctite [®] 401 [™] Prism [®] Instant Adhesive	>240∆ >1.66∆	>300∆ >2.07∆	>480∆ >3.31∆	>240∆ >1.66∆	240 1.66	>240∆ >1.66∆	>240∆ >1.66∆	>240∆ >1.66∆	>240∆ >1.66∆	ige) caused a stat ige) caused a stat angth of the mater
AD	odyear	Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	>240∆ >1.66∆	>270∆ >1.86∆	>450∆ >3.10∆	>190∆ >1.31∆	140 0.97	>240∆ >1.66∆	>240∆ >1.66∆	>240∆ >1.66∆	>240∆ >1.66∆	(or processing char (or processing char s exceeded the stre
	by God	ives		100 phr	100 phr 25 phr	100 phr 100 phr	100 phr 100 phr	100 phr 15 phr	100 phr 25 phr	100 phr 2 phr	100 phr 5 phr	ed additive ed additive st specimen ned.
	Natsyn	id Adhesi	0(Natsyn 2200 I Cure	Natsyn 2200 N-550	Natsyn 2200 Calcium Carbonate	Natsyn 2200 Dixie Clay	Natsyn 2200 Hi Sil 233	Natsyn 2200 Naphthenic Oil	Natsyn 2200 Venox 2-AZ	Natsyn 2200 Armostat 550	lition of the indicat- lition of the indicat- ce applied to the te- e could be determin
	Polyisoprene	Loctite [®] Bran	Control: Natsyn 220	T80 Cure Cured to 80% of Modulus at Full	Carbon Black	Calcium Carbonate	Clay	Silica	Naphthenic Oil	Antioxidant	Antistatic	NOTES: \Box = The adc \Box = The adc Δ = The forc adhesiv

Polyolefin Elastomers (POE)

thermoplastic elastomer

Trade Names

Manufacturer

- Engage
- DuPont Dow Elastomers
- Hercuprene
- J-Von
- Sarlink

DSM

General Description

Polyolefin elastomers can be divided into two major categories. The first type is a two-phase polymer system consisting of a thermoplastic matrix, such as polypropylene or polyethylene, with a dispersed second phase of an unvulcanized rubber, such as EPDM, natural rubber and SBR. Hercuprene is an example of this type of polyolefin elastomer. The second category is a family of ethylene-octene copolymers. They are produced by DuPont Dow Elastomers via a proprietary polymerization technique and marketed under the trade name Engage. These systems can be vulcanized using peroxides, silanes or irradiation to yield improved high temperature properties.

General Properties

Polyolefin elastomers are characterized by excellent low temperature properties, clarity and crack resistance. Engage has a brittle point below -60°F (-76°C) for formulations with hardnesses ranging from 60 to 90 Shore A. In addition, they offer excellent UV, ozone and weatherability resistance. They also offer good resistance to polar fluids. Resistance to non-polar fluids is poor due to the aliphatic nature of the polymer backbone. Room temperature physical properties are good. Like most thermoplastic systems, the physical properties at temperature decrease with increasing temperature. This limitation can be addressed by vulcanizing the polymer. However, this extra processing step mitigates the economic benefits of the polyolefin elastomers over conventional vulcanized rubber. Polyolefin elastomers typically have very low specific gravities and can be utilized in applications where reducing weight is critical.

Typical Applications

- Automotive Rub strips, fascias, bumper covers, molding, trim
- Electrical Wire and cable insulation and jacketing

Relative Adhesive Performance

- High Surface Insensitive CA Loctite[®] 401[™] Prism[®] Instant Adhesive Primer - Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite[®] 770[™] Prism[®] Primer Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive
- Medium Methyl CA Loctite[®] 496[™] Super Bonder[®] Instant Adhesive Rubber Toughened CA - Loctite[®] 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite[®] 4204[™] Prism[®] Instant Adhesive Oxime Silicone - Loctite[®] 5900[®] Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite[®] 330[™] Depend[®] Adhesive
- Low Acetoxy Silicone Loctite® Superflex® RTV Silicone Adhesive Sealant

Effects of Formulation and Processing

Additives Antistatic - Decrease

Surface Treatments

			Loctite [®] 3105 [™] Light Cure Adhesive	>540∆ > <mark>3.72</mark> ∆	400 2.76	>560∆ >3.86∆	330 2.28	330 <mark>2.28</mark>	in All
			Loctite [®] 330 [™] Depend [®] Adhesive	210 1.45	210 1.45	170 1.17	180 1.24	180 1.24	System Used nulations Required
			Loctite° 5900° Flange Sealant, Heavy Body	200 1.38	150 1. <mark>03</mark>	190 1.31	130 0.90	70 0.48	ts. Cure its. Form
			Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	70 0.48	70 0.48	60 0.41	60 0.41	<10 <0.07	5% confidence limi 5% confidence lim 5% confidence lim rength achieved b
ENGTH			Loctite [®] 4204 ^m Prism [®] Instant Adhesive	280 1.93	230 1. <mark>59</mark>	>270∆ >1.86∆	200 1.38	200 1.38	d strength within 9 nd strength within 9 e the actual bond st
AR STR			Loctite [®] 480 [™] Prism [®] Instant Adhesive	210 1.45	200 1.38	180 1.24	190 1.31	70 0.48	ncrease in the bon decrease in the bor strate failure befor
'E SHE/	sd) MD	mers	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	>440∆ >3.03∆	>500∆ >3.45∆	>460∆ >3.17∆	>470∆ >3.24∆	>470∆ > <mark>3.24</mark> ∆	stically significant i stically significant c ial resulting in subs
DHESIV		Dow Elasto	Loctite [®] 401 [™] Prism [®] Instant Adhesive	>540∆ > <mark>3.72</mark> ∆	>550∆ >3.79∆	>460∆ >3.17∆	>380∆ >2.62∆	>380∆ > <mark>2.62</mark> ∆	nge) caused a stati nge) caused a stati ength of the materi
AC		e by DuPont	Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	270 1.86	270 1.86	310 2.14	230 1.59	230 1.59	or processing char or processing char s exceeded the str
		mer Engag	dhesives					0 100 phr tat 550 5 phr	he indicated additive he indicated additive d to the test specimen be determined.
		efin Elasto	e® Brand A	EP 8100	EP 8150	P 8200	P 8500	EP 850 Armos	$\Box = The addition of t$ $\Box = The addition of t$ $\Delta = The force appliesadhesive could t$
		Polyol	Loctite	Engage E	Engage E	Engage E	Engage E	Antistatic	NOTES:

Poly(propylene oxide) Rubber (GPO)

thermoset rubber

Trade Names

Manufacturer

Parel

Zeon Chemical

General Description

Poly(propylene oxide) rubber is formed by the copolymerization of propylene oxide and allyl glycidyl ether. The allyl glycidyl ether monomer is present at lower quantities (approximately 6% by weight) and provides cross-link sites for the polymer via the unsaturated group. The propylene oxide provides flexibility in the backbone in several ways. First, the presence of the oxygen atom in the backbone aids polymer chain flexibility. Secondly, the propylene oxide monomer can polymerize with itself to form atactic as well as isotactic regions. The combination of these two regions results in irregular packing of the polymer chains which reduces crystallinity. Another factor contributing to the flexibility of PPO is the bulky allyl glycidyl ether pendant group which further reduces crystallinity by disrupting ordered packing of the polymer. Sulfur-based curative systems are generally used with these polymers, even though peroxides are capable of taking advantage of the unsaturation. Peroxide cure systems tend to cause chain scission, resulting in unacceptable properties.

General Properties

The most notable characteristic of poly(propylene oxide) rubber is its ability to offer excellent hysteresis properties and dynamic properties over a wide temperature range. Even after exposure to elevated temperatures as high as 302°F (150°C) for a week, the dynamic properties of GPO rubber remain excellent. Typically, they offer good low temperature flexibility, good ozone resistance, fair fuel and oil resistance and good properties retention at high temperatures. GPO rubber has fair resistance to hydrocarbon fuels and oils and good hydrolysis and swelling resistance in polar solvents such as water and alcohol. GPO rubber does not have outstanding physical properties and tends to have poor compression set and flame resistance. The limited physical properties of GPO rubber can be improved using reinforcing fillers, such as carbon black or silica. However, the poor compression set of GPO rubber is a function of the sulfur cross-links and cannot be easily remedied.

Typical Applications

 Automotive Motor mounts, body mounts, suspension bushings, dust seals, boots

Relative Adhesive Performance

- Methyl CA Loctite[®] 496[™] High Super Bonder[®] Instant Adhesive Surface Insensitive CA - Loctite® 401[™] Prism[®] Instant Adhesive Primer - Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite® 770[™] Prism[®] Primer
- Rubber Toughened CA Loctite® Medium 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite® 4204[™] Prism[®] Instant Adhesive Light Curing Acrylic - Loctite® 3105™ Light Cure Adhesive
- Low Acetoxy Silicone - Loctite® Superflex® **RTV Silicone Adhesive Sealant** Oxime Silicone - Loctite[®] 5900[®] Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite® 330[™] Depend[®] Adhesive

Effects of Formulation and Processing

 Additives 	Carbon Black - Increase
	Aromatic Oil - Decrease
	Plasticizer - Decrease

 T₈₀ Cure Decrease

Surface Treatments

			AD	HESIV	/E SHE/	AR STR	RENGTH	-			
					MP	a)					
oly(propyle	ne oxide)	Rubl	<mark>Oer</mark> Par	el 58 by Ze	on Chemical						
octite [®] Bran	d Adhesiv	es	Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	Loctite [®] 401 [™] Prism [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 480 [™] Prism [®] Instant Adhesive	Loctite [®] 4204 ^m Prism [®] Instant Adhesive	Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite [®] 5900 [®] Flange Sealant, Heavy Body	Loctite [®] 330 [™] Depend [®] Adhesive	Loctite [®] 3105 [™] Light Cure Adhesive
introl: Parel 58	Parel 58	100 phr	>120∆ >0.83∆	>120∆ >0.83∆	>110∆ >0.76∆	>120∆ >0.83∆	>110∆ >0.76∆	40 <mark>0.28</mark>	50 <mark>0.34</mark>	50 0.34	>170∆ >1.17∆
0 CUre ed to 80% of Modulus at Full	Parel 58 I Cure	100 phr	>80∆ >0.55∆	>90∆ >0.62∆	>90∆ >0.62∆	>80∆ >0.55∆	>90∆ >0.62∆	40 0.28	50 0.34	50 0.34	>150∆ >1.03∆
rbon Black	Parel 58 N550	100 phr 25 phr	>330∆ >2.28∆	>350∆ >2.41∆	>360∆ >2.48∆	>410∆ >2.83∆	>350∆ >2.41∆	50 0.34	100 0.69	70 0.48	170 1.17
omatic Oil	Parel 58 Aromatic Oil	100 phr 20 phr	>90∆ >0.62∆	>90∆ >0.62∆	>90∆ >0.62∆	>90∆ >0.62∆	>80∆ >0.55∆	40 0.28	50 0.34	50 0.34	>140∆ >0.97∆
asticizer	Parel 58 Dioctyl Phthalate	100 phr 15 phr	>80∆ >0.55∆	>80∆ >0.55∆	>90∆ >0.62∆	>90∆ >0.62∆	>80∆ >0.55∆	40 0.28	50 0.34	50 0.34	>120∆ >0.83∆
Itistatic	Parel 58 Armostat 550	100 phr 5 phr	>110∆ >0.76∆	>100∆ >0.69∆	>110∆ >0.76∆	>100∆ >0.69∆	>100∆ >0.69∆	50 0.34	70 0.48	50 0.34	>170∆ >1.17∆
ES: \Box = The adc \Box = The adc Δ = The forc adhesiv	littion of the indicated littion of the indicated applied to the test s e could be determined	additive (additive (specimen:	or processing chan; or processing chan; s exceeded the stret	ge) caused a stati ge) caused a stati ngth of the materi	stically significant i stically significant d ial resulting in subs	ncrease in the bor lecrease in the bo trate failure befor	nd strength within ' ind strength within e the actual bond s	5% confidence limi 95% confidence lim strength achieved by	its. Cur ints. Zinc y the Zuffu y the TMTI	e System Used NII Formulation: Oxide	500 phr 125 phr 1.50 phr 1.50 phr

Polysulfide Rubber

thermoset rubber

Trade Names

Manufacturer

LPThiokol

Morton Thiokol

Morton Thiokol

General Description

The key factor that distinguishes polysulfide rubbers from other rubbers is the high sulfur content of the polymer backbone. This results in a very flexible, virtually impermeable rubber. Polysulfide elastomers are produced by the condensation reaction of an organic dihalide with sodium tetrasulfide. Examples of organic dihalides used include ethylene dichloride and di-2-chloroethyl ether. Commercial grades vary in sulfur content from 37 to 84%; the sulfur content of the resulting rubber being dependent on the base monomer selected. In addition to the performance benefits offered by the high sulfur content of the backbone, the various reactive sites on the polymer backbone facilitate cross-linking by a wide variety of methods. Generally, a metal oxide or peroxide is used to cross-link the terminal thiol groups, although terminal chlorine and hydroxide groups can also be used. Polysulfide polymers are available in viscosities ranging from pourable liquids to millable gum stock. The strong odor of polysulfides, coupled with the need to peptize some of the gum rubber stocks, can make them difficult to process.

General Properties

The key performance benefits of polysulfide elastomers are their outstanding chemical resistance and virtual impermeability to most gases, hydrocarbon solvents and moisture. This, coupled with their high flexibility and long-term resistance to both polar and non-polar solvents, makes them especially well suited for sealing applications that require exceptional barrier and resistance properties. Other performance characteristics include good performance at low temperatures and good resistance to UV and ozone. Polysulfide elastomers do not have very good compression set resistance and have fair physical properties. The limited physical properties can be addressed by compounding them with other rubbers, such as polychloroprene. Polysulfide rubber has a recommended service temperature of approximately -40 to 250°F (-40 to -121°C).

Typical Applications

- Aerospace Propellant binders, gas bladders, sealants, valves
- Automotive Gaskets, rubber washers
- Construction Building caulk, window glazing

Relative Adhesive Performance

- High Methyl CA Loctite® 496[™] Super Bonder® Instant Adhesive Surface Insensitive CA - Loctite® 401[™] Prism® Instant Adhesive Primer - Loctite® 401[™] Prism® Instant Adhesive with Loctite® 770[™] Prism® Primer Rubber Toughened CA - Loctite® 480[™] Prism® Instant Adhesive Rubber Toughened CA - Loctite® 4204[™] Prism® Instant Adhesive Light Curing Acrylic - Loctite® 3105[™] Light Cure Adhesive
- Medium
 Oxime Silicone Loctite® 5900® Flange Sealant, Heavy Body
 Two-Part No-Mix Acrylic - Loctite® 330™ Depend® Adhesive
- Low Acetoxy Silicone Loctite[®] Superflex[®] RTV Silicone Adhesive Sealant

Effects of Formulation and Processing

- Additives
 Carbon Black Increase
 Clay Increase
 Silica Increase
 Aromatic Oil Decrease
 Antistatic Increase
- T₈₀ Cure Increase

Surface Treatments

			AD	HESIV	/E SHE/ (psi	AR STR	RENGT	-			
Polysulfide R	ubber	Thioko	I by Morton	Thiokol							
Loctite [®] Bran	nd Adhesiv	les	Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 480 [™] Prism [®] Instant Adhesive	Loctite [®] 4204 ^m Prism [®] Instant Adhesive	Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite [®] 5900 [®] Flange Sealant, Heavy Body	Loctite [®] 330 [™] Depend [®] Adhesive	Loctite [®] 3105 [™] Light Cure Adhesive
Control: Thiokol FA Linear structure		100 phr	150 1. <mark>03</mark>	>180∆ >1.24∆	>170∆ >1.17∆	>190∆ >1.31∆	>140∆ >0.97∆	80 <mark>0.55</mark>	150 1. <mark>03</mark>	110 0.76	>240∆ >1.66∆
T ₈₀ Cure	Thiokol FA	100 phr	>270∆	>270∆	>230∆	>280∆	>290∆	80	150	140	>370∆
Cured to 80% of Modulus at Fu	Il Cure		>1.86∆	>1.86∆	> 1.59 ∆	>1.93∆	>2.00∆	0.55	1.03	0.97	>2.55∆
Thiokol ST Branched structure	Thiokol ST	100 phr	>180∆ >1.24∆	>180∆ >1.24∆	>170∆ >1.17∆	>190∆ >1.31∆	>180∆ >1.24∆	70 0.48	150 1.03	150 1.03	>300∆ >2.07∆
Carbon Black	Thiokol FA	100 phr	>390∆	>380∆	>470∆	>470∆	>500∆	110	250	290	240
	N-550	100 phr	>2.69∆	>2.62∆	>3.24∆	> <mark>3.24</mark> ∆	>3.45∆	0.76	1.72	2.00	1.66
Clay	Thiokol FA	100 phr	250	>290∆	310	280	310	130	230	260	>460∆
	Dixie Clay	100 phr	1.72	>2.00∆	2.14	1.93	2.14	0.90	1.59	1.79	>3.17∆
Silica	Thiokol FA	100 phr	330	340	290	350	330	110	240	310	420
	Hi Sil 233	100 phr	2.28	2.34	2.00	2.41	2.28	0.76	1.66	2.14	2.90
Aromatic Oil	Thiokol FA	100 phr	>90∆	100	80	110	90	60	110	60	>140∆
	Aromatic Oil	15 phr	>0.62∆	0.69	0.55	0.76	0.62	0.41	0.76	0.41	>0.97∆
Antistatic	Thiokol FA	100 phr	>190∆	180	>220∆	>190∆	>220∆	80	150	180	>340∆
	Armostat 550	5 phr	>1.31∆	1.24	>1.52∆	>1.31∆	>1.52∆	0.55	1.03	1.24	>2.34
NOTES: □ = The ad strengt □ = The ad □ = The ad = strengt ∆ = The for = ad	h within 95% confider h within 95% confider dition of the indicated h within 95% confider ce applied to the test bond strength achieve	I additive (nce limits. I additive (nce limits. specimen: sd by the a	or processing chan, or processing chan, s exceeded the stret dhesive could be d	ge) caused a stati ge) caused a stati. ngth of the materi etermined.	stically significant i stically significant d al resulting in subs	ncrease in the bor lecrease in the bo itrate failure befor	nd Poly ind Thiok MTBS MTBS ethe Zinc (Magli	sulfide Cure S col FA formulation c Acid Dxide te D	Systems s 0.5 phr 0.1 phr 10.0 phr 4.0 phr	Thiokol ST formulati Stearic Acid Calcium Hydroxide Zinc Peroxide Vaglite D	ons 1.0 phr 5.0 phr 4.0 phr

Silicone-Modified EPDM

thermoset rubber

Trade Names

Manufacturer

 Royaltherm Uniroyal Chemical

General Description

Silicone-modified EPDM represents a unique combination of the benefits offered by silicone and EPDM rubbers. The inorganic polysiloxane backbone of the silicone contributes low temperature flexibility and high temperature resistance, while the EPDM contributes good mechanical properties. The resulting polymer has better physical properties than a silicone and better thermal resistance and strength at temperature than EPDM. Silicone-modified EPDM can be vulcanized by sulfur-based curatives or peroxide cure systems. Peroxide cure systems are generally utilized to maximize heat resistance and compression set resistance. Specialty purpose base compounds offering non-halogen flame retardancy, translucency, FDA approval or utility in sponge applications are also available.

General Properties

The performance properties of silicone-modified EPDM are best understood in terms of the properties of each of the pure components. In general, it has the good mechanical properties of EPDM rubber with the improved thermal resistance of silicone elastomers. However, there are some trade-offs. For example, the service life at temperatures ranging from 300 to 400°F (149 to 204°C) is an order of magnitude longer than that achieved by EPDM and at least an order of magnitude less than that achieved by silicone. Silicone-modified EPDM offers much better strength retention than silicone when exposed to steam at 327°F (164°C), but only slightly less than EPDM. Tensile strength and abrasion resistance follow the same trend. Silicone-modified EPDM also offers the excellent chemical resistance and wet electrical properties of EPDM. The hot tear strength of silicone-modified EPDM exhibits a synergistic effect between the two phases since it has hot tear strengths superior to that of either of its pure components.

Typical Applications

- Automotive Ignition cables, seals, gaskets, weatherstripping
- Industrial Steam hoses, gaskets, seals

Relative Adhesive Performance

- High
 - Methyl CA Loctite[®] 496[™] Super Bonder[®] Instant Adhesive Surface Insensitive CA - Loctite® 401[™] Prism[®] Instant Adhesive Primer - Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite® 770[™] Prism[®] Primer Rubber Toughened CA - Loctite® 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite® 4204[™] Prism[®] Instant Adhesive Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive
- Medium Oxime Silicone - Loctite® 5900® Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite® 330[™] Depend[®] Adhesive
- Low Acetoxy Silicone - Loctite® Superflex® **RTV Silicone Adhesive Sealant**

Effects of Formulation and Processing

- Additives Carbon Black - Increase Silica - Increase Plasticizer - Decrease Antistatic - Decrease
- T₈₀ Cure No Trend Apparent

Surface Treatments

ADHESIVE SHEAR STRENGTH (psi) (MPa)	Modified EPDM Royaltherm by Uniroyal Chemical Company	Brand Adhesives Loctite* Loctite* Loctite* Loctite* A01 th Prism* Loctite* Loctite* Superflex* 5900* Loctite* 3105 th 2105 th Superflex* 5900* Loctite* 1305 th Superflex* 5900* Loctite* 10 th Loctite* Loctite* 200 th Loctite* 10 th Loctite* 10 th Loctite* 10 th Loctite* Coche Loctite* 10 th	Itherm 1411 >380 ^A >350 ^A >310 ^A >270 ^A >250 ^A 40 110 110 >350 ^A >2.62 ^A >2.41 ^A >2.14 ^A >1.86 ^A >1.72 ^A 0.28 0.76 0.76 >2.41 ^A		721 Royaltherm 1721 100 phr >260 ^A >330 ^A >270 ^A >250 ^A 60 160 140 350 Improved heat resistance >1.79 ^A >2.41 ^A >2.14 ^A >1.86 ^A >1.72 ^A 0.41 1.10 0.97 2.41	C Royaltherm 1411 100 phr >380 ^A >640 ^A >620 ^A >480 ^A >610 ^A 110 210 210 350 N-330 30 phr >2.62 ^A >4.41 ^A >4.27 ^A >3.31 ^A >4.21 ^A 0.76 1.45 1.45 2.41	Royaltherm 1411 100 phr 580 >720 ^A >470 ^A >540 ^A 90 210 240 860 VN-3 silica 45 phr 4.00 >4.97 ^A >3.24 ^A >3.72 ^A 0.62 1.45 1.66 5.93	Royaltherm 1411 100 phr >260 ^A >260 ^A >270 ^A >250 ^A 30 70 70 >350 ^A Dioctyl Prithalate 12 phr >1.79 ^A >1.93 ^A >1.79 ^A >1.78 ^A >1.72 ^A 0.21 0.48 0.48 >2.41 ^A	Royaltherm 1411 100 phr >2300 >2900 >160 300 90 90 350 Armostat 550 5 phr >1.59 ^A >2.00 ^A >1.10 ^A 1.38 >1.72 ^A 0.28 0.62 0.62 2.41	= The addition of the indicated additive (or processing change) caused a statistically significant increase in the bond strength within 95% confidence limits. = The addition of the indicated additive (or processing change) caused a statistically significant decrease in the bond strength within 95% confidence limits. The force applied to the test specimens exceeded the strength of the material resulting in substrate failure before the actual bond strength achieved by the Di Cup 40C aton phr 200 phr 20
	Silicone Modified E	Loctite [®] Brand Adh	Control: Royaltherm 1411	T_{80} Cure Royaltherm Cured to 80% of Modulus at Full Cure	Royaltherm 1721 Royaltherm Improved he	Carbon Black Royaltherm	Silica Royatherm	Plasticizer Royaltherm	Antistatic Royaltherm	NOTES: \Box = The addition of t \Box = The addition of t Δ = The force applies adhesive could b

Silicone Rubber (MQ, VMQ, PMQ, PVMQ)

thermoset rubber

Trade Names

Manufacturer

Blensil

G.E. Silicones

- Elastosil
- Silastic
- Wacker Chemical Corp. Dow Corning STI

General Description

Silicone rubber is characterized by an inorganic polymeric backbone made up of silicon to oxygen bonds which are known as siloxane linkages. The majority of silicon atoms in the silicone polymer backbone have two pendant methyl groups, which forms the most common silicone polymer used in silicone rubbers, polydimethyl siloxane (MQ). By replacing a portion of the methyl groups with other species, the silicone rubber can be given cross-link sites or properties tailored for specific needs. For example, in peroxide cured silicone rubber systems, a small percentage of the methyl groups are replaced with vinyl groups (VMQ). The vinyl group containing polymers is also used in conjunction with a platinum catalyst and suitable hydride cross-linkers to produce addition cure silicone formulations. In RTV silicone adhesives and condensation cure compounds, hydrolyzable groups are capped onto the terminal ends of the silicone polymer to provide sites for cross-linking to occur when moisture reacts with these sites to leave reactive silanol sites. As was mentioned, replacing a portion of the methyl groups with other species can also provide properties for specific needs. For example, replacing 5-10% of the methyl groups with bulkier phenyl groups will dramatically drop the brittle point of the silicone (PMQ). Replacing a portion of the methyl groups with trifluoropropyl groups will increase the polarity of the silicone rubber, thus improving its resistance to non-polar solvents. These types of silicones are known as fluorosilicone elastomers and are discussed in a separate chapter.

General Properties

The unique properties of polydimethyl siloxane elastomers arise primarily from the high bond energy of the silicon oxygen bonds along the backbone, and from the non-polar nature of the two methyl groups which are pendant from each of the silicon atoms. The result is an elastomer with good flexibility and compression set resistance over a wide temperature range. The silicone oxygen bond results in a polymer with excellent resistance to UV and ozone, as well as long-term exposure to temperatures of 400°F (204°C) and intermittent exposure to temperatures as high as 600°F (316°C). More importantly, silicone elastomers retain much of their tensile strength and compression set resistance at these high temperatures. The large volume of the silicon atom also results in a polymer with a large amount of free space and flexibility. Consequently, silicone polymers have high gas permeation rates and remain flexible to temperatures as low as -60°F (-51°C). With the addition of phenyl groups on the backbone, the brittle point can be lowered to -120°F (-84°C). The lack of polarity in the silicone elastomer results in very good resistance to polar solvents such as water and alcohols. Non-polar solvents such as aliphatic and aromatic hydrocarbons tend to swell silicones 200-300% and often require the use of the more polar fluorosilicone elastomers. Resistance to many acids and salts is good, though strong bases will degrade the polymer.

Typical Applications

- Automotive Hoses, gaskets, seals, ignition cable insulation
- Industrial Adhesives, oven door gaskets, seals, sponges
- Medical Implantable devices, tubing

Relative Adhesive Performance

- High Primer Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite[®] 770[™] Prism[®] Primer
- Medium
 Surface Insensitive CA Loctite[®] 401[™] Prism[®] Instant Adhesive Acetoxy Silicone - Loctite[®] Superflex[®] RTV Silicone Adhesive Sealant Oxime Silicone - Loctite[®] 5900[®] Flange Sealant, Heavy Body Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive
- Low Methyl CA Loctite[®] 496[™] Super Bonder[®] Instant Adhesive Rubber Toughened CA - Loctite[®] 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite[®] 4204[™] Prism[®] Instant Adhesive Two-Part No-Mix Acrylic - Loctite[®] 330[™] Depend[®] Adhesive

Effects of Formulation and Processing

- Additives All Except Plasticizer Increase CA
- T₈₀ Cure No Trend Apparent

Surface Treatments

Loctite[®] 770[™] Prism[®] Primer – Increase

		AD	HESIV	/E SHE/ (psi (MP	AR STR () a)	RENGT	Ŧ			
Silicone Rubb	OLL SE 456U by G	seneral Electr	ic							
Loctite [®] Brand	d Adhesives	Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	Loctite [®] 401 [™] Prism [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 480 [™] Prism [®] Instant Adhesive	Loctite [®] 4204 ^m Prism [®] Instant Adhesive	Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite° 5900° Flange Sealant, Heavy Body	Loctite® 330 th Depend® Adhesive	Loctite [®] 3105 ^m Light Cure Adhesive
Control: SE 456U	100 phr	<10 <0.07	70 0.48	220 1. <mark>52</mark>	<10 < <mark>0.07</mark>	10 0.07	290 <mark>2.00</mark>	200 1.38	<10 < <mark>0.07</mark>	230 1.59
Tg0 Cure Cured to 80% of Modulus at Full C	SE 456U 100 phr Cure	20 0.14	190 1.31	290 2.00	<10 <0.07	30 0.21	180 1.24	280 1.93	20 0.14	230 1.59
Carbon Black	SE 456U 100 phr N-550 30 phr	<10 <0.07	>250∆ >1.72∆	>320∆ >2.21∆	10 0.07	80 0.55	190 1.31	200 1.38	100.070.07	140 0.97
Calcium Carbonate	SE 456U 100 phr Calcium Carbonate 30 phr	100.070.07	190 1.31	>310 >2.14∆	40 0.28	60 0.41	200 1.38	200 1.38	40 0.28	>290∆ >2.00∆
Clay Polyethylene Glycol 3 phr,	SE 456U 100 phr Whitex Clay 30 phr	80 0.55	>300∆ >2.07∆	>320∆ >2.21∆	70 0.48	90 0.62	290 2.00	170 1.17	~10 ~0.07	140 0.97
Fumed Silica	SE 456U 100 phr Aerosil 200 11.5 phr	<10 <0.07	110 0.76	350 2.41	<10 <0.07	190 1.31	190 1.31	200 1.38	<10 <0.07	250 1.72
Ground Silica	SE 456U 100 phr Min-U-Sil 10 30 phr	<10 <0.07	130 0.90	290 2.00	<10 <0.07	30 0.21	200 1.38	200 1.38	~10 ^0.07	230 1.59
Iron Oxide	SE 456U 100 phr Red Iron Oxide E-4182 30 phr	100.070.07	110 0.76	>390∆ >2.69∆	<10 <0.07	80 0.55	180 1.24	200 1.38	~10 ~0.07	230 1.59
Silicone Plasticizer	SE 456U 100 phr 1000 cP fluid 15 phr	<10 <0.07	70 0.48	220 1.52	<10 <0.07	10 0.07	290 2.00	170 1.17	100.070.07	60 0.41
Antistatic	SE 456U 100 phr Armostat 550 4 phr	170 1.17	210 1.45	190 1.31	170 1.17	170 1.17	210 1.45	200 1.38	<10 <0.07	230 <mark>1.59</mark>
NOTES: = The additi	ion of the indicated additive ion of the indicated additive	(or processing chan (or processing chan	ige) caused a stati ige) caused a stati	istically significant i istically significant o	ncrease in the bor decrease in the bo	nd strength within 9 nd strength within	5% confidence limi 95% confidence lim	ts. Cure Syste Form	and Reinforce em Used in All ulations	ement
Δ = The force adhesive	applied to the test specimer could be determined.	ns exceeded the stre	ength of the mater	ial resulting in subs	s trate failure befor	e the actual bond s	strength achieved b	y the DiCum Aerosil	yl Peroxide 200	1.50 phr 5.00 phr

Styrene-Butadiene Rubber (SBR)

thermoset rubber

Trade Names

Manufacturer

Coperbo

Firestone

Enichem

Goodyear

Goodyear

Housmex

Firestone

Shell Chemical

Afpol

Cal Polymers Bayer

- Buna
- Copeflex
- Duradene
- Europrene
- Kraton
- Plioflex
- Pliolite
- Solprene
- Stereon

General Description

SBR is formed via the copolymerization of styrene and butadiene. This can be performed as an emulsion or solution polymerization. In emulsion polymerizations, the monomer is emulsified in a medium, such as water, using an emulsifying agent, such as soap. This can be performed as a hot process at 122°F (50°C) or a cold process at 41-50°F (5-10°C). Solution polymerizations typically occur in a hydrocarbon solution with an alkyl lithium catalyst. Solution polymerizations offer improved properties due to the increased control of molecular weight and stereospecificity. In addition, emulsion SBR typically contains 4-7% of non-rubber emulsifier residues which solution SBR does not.

General Properties

Approximately 75% of the SBR produced in the US is used in tires. This is due to the superior abrasion resistance and traction of SBR. For tire applications, the glass transition temperature (Tg) is critical. If the Tg is too high, the tires will become brittle in cold conditions. If the Tg is too low, the tire traction is compromised. Consequently, any rubber with a Tg which is not between -58 and -94°F (-50 and -70°C) must be mixed with at least one other rubber for tire applications. NR and SBR have Tqs which allow them to be used as the sole elastomer in a tire compound. The processing temperature of SBR has a large effect on the resulting properties of the material. Cold SBR has better abrasion resistance and dynamic properties, as well as a higher capacity to be extended, than hot SBR. Therefore, hot SBR is no longer used for tire applications. Due to the increased control of solution SBR, improved abrasion resistance, traction and hysteretic properties have been realized. Consequently, solution SBR is rapidly replacing emulsion SBR for tire production. The addition of carbon black has many advantageous effects on the properties of SBR. In particular, it increases the strength properties,

hardness and dimensional stability of SBR. In addition, it can provide electrical and thermal conductivity, all while lowering cost.

Typical Applications

- Automotive Tires, hoses, belts
- Industrial Foamed products, extruded goods
- Consumer Shoe soles, waterproof materials
- Miscellaneous Adhesives, asphalt

Relative Adhesive Performance

- High Methyl CA - Loctite[®] 496[™] Super Bonder[®] Instant Adhesive Surface Insensitive CA - Loctite® 401[™] Prism[®] Instant Adhesive Primer - Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite® 770[™] Prism[®] Primer Rubber Toughened CA - Loctite® 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite® 4204[™] Prism[®] Instant Adhesive
- Medium Oxime Silicone - Loctite® 5900® Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite® 330[™] Depend[®] Adhesive Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive
- Low Acetoxy Silicone - Loctite[®] Superflex[®] **RTV Silicone Adhesive Sealant**

Effects of Formulation and Processing

- Additives High Styrene - Increase Carbon Black - Increase Clay - Increase Silica - Increase Styrene Resin - Increase Aromatic Oil - Decrease Processing Aid - Increase Antioxidant - Increase
 - T₈₀ Cure No Trend Apparent

Surface Treatments

		AD	HESIV	/E SHE/ (psi	AR STR	RENGT	-			
				(MP)	a)					
Styrene Butadiene Ruk	ober	Plioflex by	Goodyear							
Loctite [®] Brand Adhesiv	les	Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	Loctite [®] 401 [™] Prism [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 480 [™] Prism [®] Instant Adhesive	Loctite [®] 4204 ^m Prism [®] Instant Adhesive	Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite° 5900° Flange Sealant, Heavy Body	Loctite [®] 330 [™] Depend [®] Adhesive	Loctite [®] 3105 ^m Light Cure Adhesive
Control: Plioflex 1502	100 phr	>220∆	>260∆	>260∆	>180∆	>190∆	60	60	60	110
cold Emulsion Polymer, 23.5% Styrene		>1.52∆	>1.79∆	>1.79∆	>1.24∆	>1.31∆	0.41	0.41	0.41	<mark>0.76</mark>
T80 CUre Plioflex 1502	100 phr	>220∆	>260∆	>260∆	>180∆	>110∆	60	100	40	110
Cured to 80% of Modulus at Full Cure		>1.52∆	>1.79∆	>1.79∆	>1.24∆	>0.76∆	0.41	<mark>0.69</mark>	0.28	0.76
Cold Solution Polymer Firestone SBR 710	100 phr	>220∆ >1.52∆	>260∆ >1.79∆	>260∆ >1.79∆	>180∆ >1.24∆	>110∆ >0.76∆	50 0.34	100 0.69	60 0.41	70 0.48
High Styrene Content Plioflex 1513	100 phr	>310∆	>340∆	>260∆	>270∆	>290∆	60	90	130	110
Cold Emulsion Polymer, 40% Styrene		>2.14∆	>2.34∆	>1.79∆	>1.86∆	>2.00∆	0.41	<mark>0.62</mark>	0.90	0.76
Carbon Black Plioflex 1502	100 phr	>550∆	>560∆	>530∆	>360∆	>350∆	60	140	110	110
FEF N-550	15 phr	> 3.79 ∆	>3.86∆	> 3.65 ∆	>2.48∆	>2.41∆	0.41	0.97	0.76	0.76
Calcium Carbonate Plioflex 1502	100 phr	>220∆	>260∆	>260∆	>180∆	>190∆	80	140	140	110
Calcium Carbonate	60 phr	>1.52∆	>1.79∆	>1.79∆	>1.24∆	>1.31∆	0.55	0.97	0.97	0.76
Clay Pliofex 1502	100 phr	>410∆	>460∆	>390∆	270	270	60	150	170	210
Dixie Clay	60 phr	>2.83∆	>3.17∆	>2.69∆	<mark>1.86</mark>	<mark>1.86</mark>	0.41	1.03	1.17	1.45
Silica Plioflex 1502	100 phr	460	>510∆	>570∆	300	>330∆	80	130	60	110
HI SII 233	15 phr	3.17	>3.52∆	> 3.93 ∆	2.07	>2.28∆	0.55	<mark>0.90</mark>	0.41	0.76
Styrene Resin Plioflex 1502	100 phr	>460∆	>510∆	>490∆	370	450	90	170	130	180
Resin S6B	25 phr	>3.17∆	>3.52∆	>3.38∆	2.55	3.10	0.62	1.17	0.90	1.24
Aromatic Oil Plioflex 1502	100 phr	>160∆	>170∆	>180∆	>180∆	>190∆	40	60	60	110
Aromatic Oil	37.5 phr	>1.10∆	>1.17∆	>1.24∆	>1.24∆	>1.31∆	0.28	0.41	0.41	0.76
Processing Aid Plioflex 1502	100 phr	>220∆	>310∆	>260∆	>180∆	>240∆	60	90	80	110
Struktol WB212	4 phr	>1.52∆	>2.14∆	>1.79∆	>1.24∆	>1.65∆	0.41	<mark>0.62</mark>	0.55	0.76
Antioxidant Plioflex 1502 DMa	100 phr	>220∆	>260∆	>260∆	>250∆	>250∆	60	90	80	110
	3 phr	>1.52∆	>1.79∆	>1.79∆	>1.72∆	>1.72∆	0.41	<mark>0.62</mark>	0.55	0.76
Antistatic Plioflex 1502	100 phr	>220∆	>260∆	>260∆	>180∆	>270∆	60	120	60	110
Armostat 550	5 phr	>1.52∆	>1.79∆	>1.79∆	>1.24∆	>1.86∆	0.41	083	0.41	0.76
NOTES: \Box = The addition of the indicated \Box = The addition of the indicated Δ = The force applied to the test adhesive could be determine	l additive (l additive (specimen: ed.	or processing chan or processing chan s exceeded the stre	ge) caused a stat ge) caused a stat ngth of the mater	istically significant i istically significant d ial resulting in subs	ncrease in the bou decrease in the bo trate failure befou	nd strength within 9 and strength within are the actual bond i	95% confidence limi 95% confidence lim strength achieved b	Its. Cure ints. Rein All stearic y the Suffur MBTS MBTS MBTS MBTS	System and forcement Use Formulations Mide Black FEF N-550	d 1.50 phr 1.50 phr 1.50 phr 1.50 phr 1.00 phr 1.00 phr

Styrenic TPEs (S-B-S, S-I-S, S-EB-S)

thermoplastic elastomer

Trade Names

Europrene SOL

Manufacturer

C-Flex

Coperflex

- Dynaflex
- Concept Coperbo GLS Corp. EniChem Phillips
- Rimflex
- Solprene

K-Resin

Kraton

Shell Chemical Co. Synthetic Rubber Tech. Housmex

General Description

Styrenic TPEs are block copolymers of styrene and a diene. In block copolymers, there are two distinct phases present. Each phase is composed of repeating segments of the same molecule. The simplest arrangement being A-B-A or a three-block structure. The dienes most commonly used are butadiene (S-B-S), isoprene (S-I-S) and ethylene-cobutylene (S-EB-S), an olefinic pair. The A indicates the hard copolymer blocks, and the B indicates the soft blocks. A block copolymer with an A-B or B-A-B backbone would not have the desired properties of a TPE because the ends of the elastomeric regions would not be anchored in crystalline regions of the TPE.

General Properties

Styrenic TPEs are typically the lowest cost TPEs but also have the lowest performance. Specific gravities range from 0.9 to 1.1, hardnesses range from 33 Shore A to 55 Shore D, and ultimate tensile strengths range from 500 to 4000 psi (3.5 to 27.6 MPa). Due to the non-polar nature of the backbone, styrenic TPEs can be extended with hydrocarbon-based oils and have excellent chemical resistance to polar solvents such as aqueous solutions, acetones and alcohols. However, this results in poor resistance to such non-polar solvents as oils, fuel and hydrocarbon solvents. As the styrene content is increased, the TPE changes from a weak, soft material to a strong elastomer and then will eventually become leathery. At styrene contents above 75%, they are hard, clear, glass-like products which are used as impact resistant polystyrene. Increasing the styrene content hardens the polymer, while the addition of extending oil softens the polymer. Both increase its processability. The weathering resistance of styrenic rubbers is dictated by the soft elastomer segment. S-B-S and S-I-S structures have a double bond per original monomer unit in the backbone. This unsaturation limits their thermal, chemical and weathering resistance. Alternatively, S-EB-S has a completely aliphatic backbone resulting in its superior

weatherability. Compounds based on S-EB-S normally contain polypropylene which increases the solvent resistance, service temperature and processability. Useful service temperatures are low for styrenic TPEs ranging from -70 to 200°F (-57 to 93°C).

Typical Applications

- Automotive Hoses, tubing
- Consumer Footwear soles
- Electrical Insulation and jackets for wire and cable
- Miscellaneous Sealants, coatings, caulking adhesives, modified thermoplastics

Relative Adhesive Performance

- High Surface Insensitive CA - Loctite® 401[™] Prism[®] Instant Adhesive Primer - Loctite[®] 401[™] Prism[®] Instant Adhesive with Loctite® 770[™] Prism[®] Primer Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive
- Medium Methyl CA - Loctite[®] 496[™] Super Bonder[®] Instant Adhesive Rubber Toughened CA - Loctite® 480[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite® 4204[™] Prism[®] Instant Adhesive
- Acetoxy Silicone Loctite® Superflex® Low **RTV Silicone Adhesive Sealant** Oxime Silicone - Loctite[®] 5900[®] Flange Sealant, Heavy Body Two-Part No-Mix Acrylic - Loctite® 330[™] Depend[®] Adhesive

Effects of Formulation and Processing

- Additives Carbon Black - Increase Silica - Increase Whiting - Decrease Aromatic Oil - Decrease Naphthenic Oil - Decrease Plasticizer - Decrease **EVA Blend - Decrease** PE Blend - Increase Antistat - Decrease C-Flex - Decrease
 - T₈₀ Cure No Trend Apparent

Surface Treatments

ADHESIVE SHEAR STRENGTH (psi) (MPa)

Styrene Butadiene TPE

Kraton by Shell Chemical and C-Flex by Concept Polymer Technology

•											
Loctite [®] Bran	id Adhesive	Sč	Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	Loctite [®] 401 [™] Prism [®] Instant Adhesive	Loctite [®] 401 ^m Prism [®] Instant Adhesive with Loctite [®] 770 ^m Prism [®] Primer	Loctite [®] 480 [™] Prism [®] Instant Adhesive	Loctite [®] 4204 [™] Prism [®] Instant Adhesive	Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite° 5900° Flange Sealant, Heavy Body	Loctite® 330 th Depend® Adhesive	Loctite® 3105™ Light Cure Adhesive
Control: Kraton G 1 S-EB-S	1650 1	100 phr	290 2.00	>510∆ >3.52∆	370 2.55	230 1.59	230 1.59	90 <mark>0.62</mark>	170 1.17	170 1.17	660 4.55
Carbon Black	Kraton G 1650 1	100 phr	530	>810∆	570	360	620	50	170	280	660
	N-550 1	100 phr	3.65	>5.59∆	3.93	2.48	4.27	0.34	1.17	1.93	4.55
Clay	Kraton G 1650 1	100 phr	220	510	580	320	340	50	170	230	>1090∆
	Dixie Clay 1	100 phr	1.52	<mark>3.52</mark>	4.00	2.21	2.34	0.34	1.17	1.59	>7.52∆
Silica	Kraton G 1650 1	100 phr	440	>550∆	>550∆	390	510	30	60	390	>660∆
	Hi Sil 233	50 phr	3.03	>3.52∆	>3.79∆	2.69	3.52	0.21	0.41	2.69	>4.55∆
Whiting	Kraton G 1650 1	100 phr	50	180	>200∆	40	40	30	30	30	180
	Precipitated Whiting 1	100 phr	0.34	1.24	>1.35∆	0.28	0.28	0.21	0.21	0.21	1.24
Aromatic Oil	Kraton G 1650 1	100 phr	140	>300∆	150	150	140	20	50	40	160
	Aromatic Oil 1	100 phr	0.97	>2.07∆	1.03	1.03	0.97	0.14	0.34	0.28	1.10
Naphthenic Oil	Kraton G 1650 1	100 phr	80	300	>370∆	90	80	<10	50	40	170
	Naphthenic Oil 1	100 phr	0.55	2.07	>2.55∆	0.62	0.55	<0.07	0.34	0.28	1.17
Plasticizer	Kraton G 1650 1	100 phr	10	<10	20	10	20	<10	<10	<10	20
	Dioctyl Phthalate	50 phr	0.07	<0.07	0.14	0.07	0.14	<0.07	<0.07	<0.07	0.14
Processing Aid	Kraton G 1650	100 phr	290	510	370	390	230	90	110	210	410
	Carnauba Wax	10 phr	2.00	<mark>3.52</mark>	2.55	2.69	1. <mark>59</mark>	0.622	0.76	1.45	2.83
EVA Blend	Kraton G 1650 1	100 phr	130	240	370	180	140	20	40	170	410
	EVA	20 phr	0.90	1.65	2.55	1.24	0.97	0.14	<mark>0.28</mark>	1.17	2.83
PE Blend	Kraton G 1650 1	100 phr	520	510	550	370	550	60	80	350	660
	Polyethylene 1	100 phr	3.59	<mark>3.52</mark>	3.79	2.55	3.79	0.41	0.55	2.41	4.55
Antistatic	Kraton G 1650 1 Armostat 550	5 phr	220 1.52	190 1.31	160 1.10	230 1.59	230 1. <mark>59</mark>	<10 <0.07	100 0.69	120 0.83	260 1.79
C-Flex Silicone Oil	-	100 phr	140 0.97	>240∆ >1.65∆	220 1.52	80 0.55	100 0.69	10 0.07	20 0.14	30 0.21	170 1.17
Kraton D 1101 S-B-S Linear	-	100 phr	160 1.10	280 1. <mark>93</mark>	370 2.55	230 1.59	230 1.59	50 0.34	170 1.17	130 0.90	>430∆ >2.96∆
PS Blend	Kraton D 1101 1	100 phr	530	510	630	450	520	90	250	290	1020
	Polystyrene 1	100 phr	<mark>3.65</mark>	<mark>3.52</mark>	4.34	<mark>3.10</mark>	3.59	<mark>0.62</mark>	1.72	2.00	<mark>7.03</mark>
Kraton D 1118X SB Type Branched	-	100 phr	120 0.83	130 0.90	150 1.03	120 0.83	140 0.97	70 0.48	170 1.17	90 0.62	320 2.21
NOTES: $\Box = The i$ $\Box = The i$ $\Delta = The f$ the a	addition of the indicated addition of the indicated orce applied to the test idhesive could be deterr	l additive l additive specime mined.	(or processing ch. (or processing ch. ns exceeded the si	ange) caused a sta ange) caused a sta trength of the mate	tistically significan tistically significan rial resulting in su	t increase in the t t decrease in the bstrate failure be	oond strength within bond strength withi fore the actual bon	r 95% confidence li n 95% confidence d strength achievec	imits. Cure limits. in Al	System Used I Formulations Required	

Thermoplastic Vulcanizates (TPV)

thermoplastic elastomer

Trade Names

Manufacturer

- Geolast
- Advanced Elastomer Systems
- Santoprene
- Advanced Elastomer Systems

General Description

Thermoplastic vulcanizates are elastomeric alloys of a continuous plastic phase and a fine dispersion of dynamically vulcanized rubber. Santoprene, for example, uses polypropylene as the plastic phase with EPDM as the rubber phase. Geolast also uses polypropylene for the plastic phase, however, nitrile rubber is used for the thermoset rubber phase. Generally, these compounds derive their physical properties from the interaction of the two phases and do not use the fillers and extenders commonly used with most thermoset rubber systems. Consequently, material properties are primarily a function of the type and level of vulcanizate and its degree of cross-linking. Even though TPVs contain a vulcanizate phase, these materials can still be processed by common thermoplastic processing equipment such as extrusion, injection molding, blow molding, thermoforming and calendering.

General Properties

In general, TPVs offer the performance properties of a thermoset rubber with the processing ease of a thermoplastic. These properties include good tensile strength, good abrasion resistance and outstanding fatigue flex resistance. The saturated nature of the olefinic backbone in the Santoprene and Geolast plastic phases, coupled with the highly cross-linked nature of their vulcanizate phases, gives them excellent chemical resistance, as well as good thermal and weathering resistance. Santoprene has shown good property retention after long-term exposure to acids, bases, and aqueous solutions. Resistance to oils and other hydrocarbons varies with grade and fluid type. However, the higher the polarity of the fluid, the more likely it is to attack Santoprene. For increased oil resistance, Geolast offers superior performance because it utilizes nitrile as the vulcanizate phase rather than EPDM. Unlike most TPEs, which soften at high temperatures, TPVs have shown good property retention at temperatures as high as 275°F (135°C) and good compression set resistance at temperatures as high as 212°F (100°C). Their low temperature performance is also good with brittle points below -67°F (-55°C).

Typical Applications

 Automotive Air ducts, rack and pinion steering boots, motor drive belts Construction Glazing seals, expansion joints Electrical Specialty wire and cable insulation Medical Drug vial stoppers, grommets, syringe plunger tips, volumetric infusion pump tips Miscellaneous Sander grips, squeegees, dust seals, clothes washer filter seals

Relative Adhesive Performance

- Primer Loctite[®] 401[™] Prism[®] High Instant Adhesive with Loctite® 770[™] Prism[®] Primer
- Medium Surface Insensitive CA - Loctite[®] 401[™] Prism[®] Instant Adhesive Rubber Toughened CA - Loctite® 4204[™] Prism[®] Instant Adhesive Two-Part No-Mix Acrylic - Loctite® 330[™] Depend[®] Adhesive Light Curing Acrylic - Loctite[®] 3105[™] Light Cure Adhesive
- Methyl CA Loctite® 496™ Low Super Bonder[®] Instant Adhesive Rubber Toughened CA - Loctite® 480[™] Prism[®] Instant Adhesive Acetoxy Silicone - Loctite® Superflex® **RTV** Silicone Adhesive Sealant Oxime Silicone - Loctite® 5900® Flange Sealant, Heavy Body

Effects of Formulation and Processing

 Additives Grey Concentrate - Increase

Surface Treatments

Loctite[®] 770[™] Prism[®] Primer – Increase

	AD	HESIV	/E SHE/ (psi (MP	AR STF () a)	RENGT	-			
Thermoplastic Vulcanizate:	S Sar	ntoprene an	d Geolast by	Advanced I	Elastomer Sy	stems			
Loctite [®] Brand Adhesives	Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	Loctite [®] 401 [™] Prism [®] Instant Adhesive	Loctite [®] 401 [™] Prism [®] Instant Adhesive with Loctite [®] 770 [™] Prism [®] Primer	Loctite [®] 480 ^m Prism [®] Instant Adhesive	Loctite [®] 4204 ^m Prism [®] Instant Adhesive	Loctite [®] Superflex [®] RTV Silicone Adhesive Sealant	Loctite [®] 5900 [®] Flange Sealant, Heavy Body	Loctite® 330 th Depend® Adhesive	Loctite® 3105™ Light Cure Adhesive
Santoprene 101-55 Santoprene 101-55 100 phr	30	80	220	20	20	20	60	50	120
	0.21	<mark>0.55</mark>	1. <mark>52</mark>	<mark>0.14</mark>	0.14	0.14	0.41	<mark>0.34</mark>	0.83
Santoprene 101-73 Santoprene 101-73 100 phr	<10	170	>390∆	90	140	20	60	110	210
	<0.07	1.17	>2.69∆	0.62	0.97	0.14	0.41	0.76	1.45
Santoprene 103-50 Santoprene 103-50 100 phr	<10	180	1220	<10	<10	10	30	230	610
	<0.07	1.24	8.41	<0.07	<0.07	<0.07	0.21	1.59	4.21
Santoprene 201-55 Santoprene 201-55 100 phr	30	70	210	<10	30	<10	<10	50	180
100 phr	0.21	0.48	1.45	<0.07	<mark>0.21</mark>	<0.07	<0.07	0.34	1.24
Santoprene 201-55 santoprene 201-55 100 phr	30	140	>200∆	<10	30	20	60	70	180
w/Grey Concentrate Grey concentrate 4 phr	0.21	0.97	>1.38∆	<0.07	<mark>0.21</mark>	0.14	0.41	0.48	1.24
Santoprene 201-73 Santoprene 201-73 100 phr	90	230	>390∆	230	240	10	10	10	280
	0.62	1.59	>2.69∆	1.59	1.66	0.07	0.07	0.07	1.93
Santoprene 201-73 Santoprene 201-73 100 phr	<10	320	330	230	50	10	10	100	280
w/Grey Concentrate Grey concentrate 4 phr	<0.07	2.21	2.28	1.59	0.34	0.07	0:07	0.69	1.93
Santoprene 203-50 Santoprene 203-50 100 phr	<10	320	1020	<10	<10	<10	40	<10	310
	<0.07	2.21	7.03	<0.07	<0.07	<0.07	0.28	<0.07	2.14
Santoprene 203-50 Santoprene 203-50 100 phr	<10	430	1070	<10	130	<10	50	170	800
w/Grey Concentrate Grey concentrate 4 phr	< <mark>0.07</mark>	<mark>2.97</mark>	<mark>7.38</mark>	< <mark>0.07</mark>	<mark>0.90</mark>	<0.07	0.34	1.17	5.52
Geolast 701-70W183 Geolast 701-70W183 100 phr	230	250	>250∆	150	>270∆	60	70	120	280
	<mark>1.59</mark>	1.72	>1.72∆	1.03	>1.86∆	0.41	0.48	<mark>0.83</mark>	<mark>1.93</mark>
Geolast 701-80W183 Geolast 701-80W183 100 phr	320	360	>350∆	320	400	30	70	180	320
	2.21	2.48	>2.41∆	2.21	2.76	0.21	0.48	01.24	2.21
Geolast 701-87W183 Geolast 701-87W183 100 phr	430	380	360	>240∆	270	<10	<10	40	750
	<mark>2.97</mark>	<mark>2.62</mark>	2.48	>1.66∆	<mark>1.86</mark>	<0.07	<0.07	0.28	5.17
Geolast 703-4045 Geolast 703-45 100 phr	420	390	470	430	550	<10	<10	230	250
	<mark>2.90</mark>	<mark>2.69</mark>	3.24	2.97	<mark>3.79</mark>	<0.07	<0.07	1.59	1.72
NOTES: \Box = The addition of the indicated additive \Box = The addition of the indicated additive Δ = The force applied to the test specimen adhesive could be determined.	(or processing char (or processing char is exceeded the stre	ge) caused a stati ge) caused a stati :ngth of the mater	istically significant i istically significant d ial resulting in subs	ncrease in the bou decrease in the bo strate failure befor	nd strength within ⁹ and strength within e the actual bond ¹	55% confidence lim 95% confidence lirr strength achieved b	its. its. V the Nor	e System Use All Information he Required	σ

Adhesive Joint Design

Introduction

In this section, the terms and concepts related to joint design are divided into three categories which include:

Types of Joints • Joint Stress Distribution • Design Guidelines

Before looking at different types of joints, a few terms need to be explained.

Joint: A joint is the location where an adhesive joins two substrates.

Joint Geometry: Joint geometry refers to the general shape of an adhesive bond. Is the shape of the bond long and narrow, short and wide, thick or thin?

Types of Joints

The specific types of joints which will be examined in this section include:

- Lap/Overlap Joggle Lap Butt Joint Scarf Joint
- Strap/Double Strap Cylindrical

Lap/Overlap Joint: A lap joint, also called an overlap joint, is formed by placing one substrate partially over another substrate.

Joggle Lap Joint: The joggle lap joint is an offset joint and is very similar to the lap joint.

Butt Joint: A butt joint is formed by bonding two objects end to end.

Scarf Joint: A scarf joint is an angular butt joint. Cutting the joint at an angle increases the surface area.

Strap Joint (Single or Double): A strap joint is a combination overlap joint with a butt joint.

Cylindrical Joint: A cylindrical joint uses a butt joint to join two cylindrical objects.

Joint Stress Distribution

Joint stress distribution is the location of stresses within a bond.

Stress: Usually expressed as Newtons per square meter (N/m^2) , which is equivalent to a Pascal (Pa.) In the English system, stress is normally expressed in pounds per square inch (psi).

Types of Stresses

There are several types of stresses commonly found in adhesive bonds which include:

- Shear
- Tensile
- Compressive
- Peel
- Cleavage

Shear Stress: A shear stress results in two surfaces sliding over one another.

Tensile and Compressive Stress Distribution: When a bond experiences either a tensile or a compressive stress, the joint stress distribution is illustrated as a straight line. The stress is evenly distributed across the entire bond. Tensile stress also tends to elongate an object.

Peel Stress: A peel stress occurs when a flexible substrate is being lifted or peeled from the other substrate.

NOTE: The stress is concentrated at one end.

Cleavage Stress: A cleavage stress occurs when rigid substrates are being opened at one end. NOTE: The stress is concentrated at one end.

Design Guidelines

Engineers must have a good understanding of how stress is distributed across a joint which is under an applied force. There are several design guidelines which should be considered when designing an adhesive joint.

• Maximize Shear/Minimize Peel and Cleavage Note from the stress distribution curve for cleavage and peel, that these bonds do not resist stress very well. The stress is located at one end of the bond line. Whereas, in the case of shear, both ends of the bond resist the stress.

• Maximize Compression/Minimize Tensile Note from the stress distribution curve for compression and tension, that stress was uniformly distributed across the bond. In most adhesive films, the compressive strength is greater than the tensile strength. An adhesive joint which is feeling a compressive force is less likely to fail than a joint undergoing tension.

• Joint Width More Important Than Overlap Note from the shear stress distribution curve, that the ends of the bond resist a greater amount of stress than does the middle of the bond. If the width of the bond is increased, the bond area at each end also increases; the overall result is a stronger joint.

In this same overlap joint, if the overlapping length is greatly increased, there is little, if any, change in the bond strength. The contribution of the ends is not increased. The geometry of the ends has not changed, thus their contribution to the bond strength has not changed.

Bond Shear Strength Width vs Overlap

As a general rule, increase the joint width rather than the overlap area ("wider is better").

Mathematical Conversions

The following are some common conversions that might be helpful when utilizing Loctite[®] brand products:

- 1 milliliter (ml) = 1 cubic centimeter (cc)
- 1,000 ml = 1 liter
- 29.5 ml = 1 fl. oz.
- 3.78 liters = 1 gallon
- 473 ml = 1 pint
- 454 grams = 1 lb.
- 947 ml = 1 quart
- 1 kilogram = 2.2 lbs.
- Weight to Volume: grams ÷ specific gravity = cc (ml)
- Volume to Weight: cc (ml) x specific gravity = grams
- Density = specific gravity x 0.99823
- Centipoises = centistokes x density (at a given temp.)
- Temperature: degrees F 32 x 0.556 = degrees C degrees C x 2 - 10% + 32 = degrees F
- Square Inches to Square Feet: + by 144
- Square Feet to Square Inches: x by 144
- In./lbs. \div 12 = ft./lbs.
- Ft./lbs. x 12 = in./lbs.
- 16 in. oz. = 1 in. lb.
- 192 in. oz. = 1 ft. lb.

Area Coverage

- Flat Parts:
 - Length(in.) x Width(in.) x bond line Thickness(in.) x 16.4 = cc/ml requirement per part

Non-threaded Cylindrical Parts:

Diameter x Éngagement Length x bond line Thickness (on radius/per side) x 3.14 x 16.4 = cc/ml requirement per part

Potting/ Encapsulating Applications: Area (3.14 x R2) x Potting Depth x 16.4 = cc/ml requirement per part

For no induced gap, make the bond line thickness figure 0.001". 16.4 is a constant for converting cubic inches to cubic centimeters.

Test Methodology

Determining The Experimental Matrix

The Selection of Adhesives

It was desired to evaluate adhesives from all families that are best suited for bonding elastomers. The families were identified as cyanoacrylates; no-mix and static mix acrylics; hot melts; epoxies; polyurethanes; silicones; and light curing acrylics. From each of these categories, an adhesive was then selected which was believed to be representative of the performance of that family of adhesives when bonding elastomers. The adhesives which were selected are tabulated in the table on the right:

The Selection of Elastomers

The various types of elastomers which are currently available were surveyed, and twenty-six of the most commonly used elastomers were selected for testing. The specific formulations of these elastomers which were evaluated were chosen in one of the two following ways:

Specialty Formulations

- 1. A grade of the elastomer which had no fillers or additives was selected and tested for bond strength performance with the aforementioned adhesives. This was the control which was used to determine the effect of additives, fillers and processing changes on the bondability of an elastomer.
- 2. The most common additives and fillers used with each elastomer were identified. Variations in polymer structure which differentiate different grades of the elastomer were also identified. For example, acrylonitrile level in nitrile rubber or vinyl acetate level in ethylene-vinyl acetate copolymer.
- 3. A separate formulation of the elastomer was compounded which represented a high level of additive or filler, a processing change or a variation in the polymer structure.
- 4. Adhesive bond strength evaluations were performed.
- 5. The results were analyzed to determine if the filler, additive or change in polymer structure resulted in a statistically significant change in the bondability of the elastomer in comparison with the unfilled control within 95% confidence limits.

Commercially Available Grades

For five elastomers, commercially available grades were selected to represent a cross section of the various grades which were available and tested for bond strength.

Adhesive	Adhesive Description
Loctite [®] 496 [™] Super Bonder [®] Instant Adhesive	Methyl cyanoacrylate
Loctite [®] 401 [™] Prism [®] Instant Adhesive MEDICAL: Loctite [®] 4011 [™] Prism [®]	Surface sensitive ethyl cyanoacrylate
Loctite [®] 414 [™] Super Bonder [®] Instant Adhesive	General-purpose ethyl instant adhesive
Loctite [®] 480 [™] Prism [®] Instant Adhesive	Rubber toughened ethyl cyanoacrylate
Loctite [®] 4204™ Prism [®] Instant Adhesive	Clear, rubber toughened, surface insensitive, thermally resistant cyanoacrylate
Loctite [®] 4851 [™] Prism [®] Instant Adhesive MEDICAL: Loctite [®] 4851 [™] Prism [®]	Flexible instant adhesive
Loctite [®] 4861 [™] Prism [®] Instant Adhesive MEDICAL: Loctite [®] 4861 [™] Prism [®]	Flexible instant adhesive
Loctite [®] 401 [™] Prism [®] Instant Adhesive Loctite [®] 770 [™] Prism [®] Primer <i>MEDICAL: Loctite[®] 4011[™] Prism[®]</i> Loctite [®] 7701 [™] Prism [®] Primer	Surface insensitive ethyl instant adhesives used in conjunction with polyolefin primer
Loctite [®] 401 [™] Prism [®] Instant Adhesive Loctite [®] 793 [™] Prism [®] Primer	Surface insensitive ethyl instant adhesives used in conjunction with polyolefin primer
Loctite [®] 330 [™] Depend [®] Adhesive	Two-part no-mix acrylic adhesive
Loctite [®] 3030 [™] Adhesive	Polyolefin Bonder
Loctite [®] H3000 [™] Speedbonder [™]	Two-part acrylic
Loctite [®] H4500 [™] Speedbonder [™]	Two-part acrylic
Loctite [®] 3105 [™] Light Cure Adhesive MEDICAL: Loctite [®] 3105 [™]	Light cure acrylic adhesive
Loctite [®] 4305 [™] Flashcure [®] Light Cure Adhesive <i>FLUORESCENT: Loctite[®]</i> 4307 [™] Flashcure [®] Light Cure Adhesive	Light cure adhesive
Loctite [®] E-00CL™ Hysol [®] Epoxy Adh.	Fast setting epoxy
Loctite [®] E-90FL™ Hysol [®] Epoxy Adh.	Tough, flexible epoxy
Loctite [®] E-30CL [™] Hysol [®] Epoxy Adh. MEDICAL: Loctite [®] E-31CL [™] Hysol [®]	Clear, glass bonding epoxy
Loctite [®] E-20HP [™] Hysol [®] Epoxy Adh. <i>MEDICAL: Loctite[®] E-21HP[™] Hysol[®]</i>	High strength epoxy
Loctite [®] E-40FL [™] Hysol [®] Epoxy Adh.	High strength epoxy
Loctite [®] E-214HP [™] Hysol [®] Epoxy Adh.	One component heat cure epoxy
Loctite [®] 3631 [™] Hysol [®] Hot Melt Adh.	Reactive urethane hot melt
Loctite [®] 7804 [™] Hysol [®] Hot Melt Adh.	Polyamide hot melt
Loctite [®] 1942 [™] Hysol [®] Hot Melt Adh.	EVA hot melt
Loctite [®] Fixmaster [®] Rapid Rubber Repair OEM: Loctite [®] U-04FL [™] Hysol [®]	Rapid rubber repair urethane two-part fast setting urethane
Loctite [®] Fixmaster [®] Epoxy	High performance epoxy
Loctite [®] Superflex [®] RTV	RTV silicone adhesive sealant
Loctite® 5900® Flange Sealant	Heavy body RTV flange sealant

Determining The Test Method

The lap shear test method (ASTM D1002) is typically used to determine adhesive shear strengths. However, because it was designed for use with metals, it has several serious limitations when evaluating elastomers. For example, because elastomers have much lower tensile strength than metals, the lap shear specimens are much more likely to experience substrate failure than the metal lap shear specimens. This makes the comparative analysis of different adhesives on an elastomer very difficult, since many of the adhesives will achieve substrate failure, rendering it impossible to make performance comparisons. Another major disadvantage to using the lap shear test method is that elastomers will deform more readily than metal as a result of their lower moduli. This results in severe part deformation which introduces peel and cleavage forces on the joint. While this cannot be avoided while testing elastomers, especially under high loads, providing a rigid support for the rubber can minimize this effect. For this testing, the rubber samples were bonded to steel lap shears to provide this rigid support.

Proper selection of the joint overlap can also give bond strength results which more accurately reflect the adhesive bond strength. When testing flexible materials in a lap joint, it is desirable to minimize the overlap to produce as uniform a stress distribution as possible over the bond area. Due to the flexibility of elastomeric materials, stresses on a lap joint are concentrated on the leading edge of the bonded assembly. As a result, when the overlap length is increased, the measured bond strength appears to drop. This occurs because the area of the joint increases, but the force that the joint can withstand does not increase proportionately, since it is still concentrated on the leading edges of the joint. Through experimentation, it was found that decreasing the overlap below 0.25" did not significantly increase the measured bond strength. As a result, it was concluded that the stress distribution over this bond area was sufficiently uniform to use for comparative testing.

The flexibility and low tensile strength inherent in elastomeric materials make it difficult to design a test specimen which will omit peel forces and not experience substrate failure at low loadings. This is particularly difficult when the test specimen must be compatible with a large-scale test program, that is, it must be amenable to consistent assembly in large numbers. The test assembly which was selected to address these concerns in this test program is shown in Figure 1.

Figure 1 Rubber Bonding Test Specimen

Limitations

While the bond strengths in this guide give a good indication of the typical strengths that can be achieved with many elastomers, as well as the effect of many fillers and additives, they also face several limitations. For example, the additives and fillers were selected because they were believed to be representative of the most commonly used additives and fillers. There are, however, many types of each additive and filler produced by many different companies, as well as different types of the same additives and/or fillers. These additives and fillers may not influence the bondability of an elastomer consistently. In addition, the additives and fillers were tested individually in this guide. Consequently, the effect of interactions between these different fillers and additives on the bondability of materials could not be determined.

Another consideration that must be kept in mind when using this data to select an adhesive/elastomer combination is how well the test method will reflect the stresses that an adhesively bonded joint will see in "real world" applications. Adhesively bonded joints are designed to maximize tensile and compressive stresses and to minimize peel and cleavage stresses. The optimum adhesive joint will have a much larger magnitude of the former two stresses than of the latter two. Thus, the shear strength of an adhesive is generally most critical to adhesive joint performance. However, since all adhesive joints will experience peel and cleavage stresses to some degree, their effects should not be disregarded.

Finally, selecting the best adhesive for a given application involves more than selecting the adhesive which provides the highest bond strength. Other factors such as speed of cure, environmental resistance, thermal resistance, suitability for automation and price will play a large role in determining the optimum adhesive system for a given application. It is suggested that the reader refer to the chapters which explain the properties of the various adhesives in greater detail before choosing the best adhesive for an application.

Test Methods

Substrate Preparation

- 1. Substrates were cut into 1" by 1" by 0.125" block shear test specimens.
- 2. All bonding surfaces were cleaned with isopropyl alcohol.

Adhesive Application and Cure Method

Cyanoacrylates

(Loctite[®] 496[™] Super Bonder[®], 401[™] Prism[®], 414[™] Super Bonder[®], 480[™] Prism[®], 4204[™] Prism[®], 4851[™] Prism[®] and 4861[™] Prism[®] Instant Adhesives)

- 1. Adhesive was applied in an even film to one test specimen.
- 2. A second test specimen was mated to the first with a 0.5" overlap (bond area = 0.5 in^2).
- 3. The block shear assembly was clamped with two Brink and Cotton No. 1 clamps.
- 4. The bonded assembly was allowed to cure at ambient conditions for 1 week before testing.

Cyanoacrylates with Polyolefin Primers

(Loctite[®] 401[™] Prism[®] Instant Adhesive and Loctite[®] 770[™] Prism[®] Primer, Loctite[®] 401[™] Prism[®] Instant Adhesive and Loctite[®] 793[™] Prism[®] Primer)

- 1. Polyolefin primer was brushed onto each bonding surface.
- 2. The polyolefin primer's carrier solvent was allowed to flash off.
- 3. Adhesive was applied in an even film to one substrate.
- 4. The second test specimen was mated to the first with a 0.5" overlap (bond area = 0.5 in^2).
- 5. The block shear assembly was clamped with two Brink and Cotton No. 1 clamps.
- 6. The bonded assembly was allowed to cure at ambient conditions for 1 week before testing.

Two-Part No-Mix Acrylic (Loctite[®] 330[™] Depend[®] Adhesive)

- 1. Loctite[®] 7387[™] Depend[®] Activator was sprayed on one test specimen.
- 2. The activator's carrier solvent was allowed to flash off for more than two minutes.
- 3. Loctite[®] 330[™] Depend[®] Adhesive was applied in an even film to a second test specimen.
- 4. Within 30 minutes, the second test specimen was mated to the first with a 0.5" overlap (bond area= 0.5 in²).
- 5. The block shear assembly was clamped with two Brink and Cotton No. 1 clamps.
- 6. The bonded assembly was allowed to cure at ambient conditions for one week before testing.

Light Cure Adhesives

(Loctite[®] 3105[™] Light Cure Adhesive, Loctite[®] 4305[™] Flashcure[®] Light Cure Adhesive)

- 1. Adhesive was applied in an even film to one test specimen.
- 2. A UV transparent, polycarbonate 1" by 1" by 0.125" test specimen was cleaned with isopropyl alcohol.
- 3. The second test specimen was mated to the first with a 0.5" overlap (bond area = 0.5 in^2).
- 4. The block shear assembly was irradiated (through the polycarbonate) by an ultraviolet light source for 30 seconds to cure the adhesive. The ultraviolet light source used was a Fusion UV Curing System, equipped with an H-bulb having an irradiance of approximately 100 mW/cm² @ 365 nm.
- 5. The assembly was left at ambient conditions for one week prior to testing.
Block Shear Test Method

- 1. Assemblies were tested on an Instron 4204 mechanical properties tester, equipped with a 50 kN load cell, and a pull speed of 0.05"/minute.
- 2. Five replicates of each assembly were tested.

Two-Part Static Mix Adhesives

(Loctite[®] E-00CL[™] Hysol[®] Epoxy Adhesive, Loctite[®] E-90FL[™] Hysol[®] Epoxy Adhesive, Loctite[®] E-30CL Hysol[®] Epoxy Adhesive, Loctite[®] E-20HP[™] Hysol[®] Epoxy Adhesive, Loctite[®] E-40FL[™] Hysol[®] Epoxy Adhesive, Loctite[®] 3030[™] Adhesive, Polyolefin Bonder, Loctite[®] H3000[™] Speedbonder[™] Structural Adhesive, Loctite[®] H4500[™] Speedbonder[™] Structural Adhesive, Loctite[®] Fixmaster[®] Rapid Rubber Repair, Loctite[®] Fixmaster[®] Epoxy)

- 1. The adhesive was dispensed onto the end of one lapshear through an appropriate static mixing nozzle to achieve thorough mixing of the two adhesive components.
- 2. A second lapshear was mated to the first with an overlap area of 0.5 in².
- 3. The mated assembly was clamped with two clamps that exerted a clamping force of approximately 20 lb.
- 4. The bonded assembly was allowed to cure for one week at ambient conditions before conditioning and testing.

One-Part Heat Cure Epoxy Adhesive (Loctite[®] E-214HP[™] Hysol[®] Epoxy Adhesive)

- 1. Adhesive was applied in an even film to the end of one lapshear.
- 2. A second lapshear was mated to the first with an overlap area of 0.5 in².
- 3. The mated assembly was clamped with two clamps that exerted a clamping force of approximately 20 lb.
- 4. The clamped assembly was heated at 350°F (177°C) for 1 hour.
- 5. The assembly was left at ambient conditions for one week prior to conditioning and testing.

Moisture Cure Products

(Loctite[®] Superflex[™] 595 RTV, Loctite[®] 5900[®] Flange Sealant, Loctite[®] 3631[™] Hysol[®] Hot Melt Adhesive)

- 1. Adhesive was applied in an even film to the end of one lap shear.
- A short length of 10 mil thick wire was embedded in the sealant to induce a 10 mil gap between the bonded lap shears (except for Loctite[®] 3631[™] Hysol[®] Hot Melt Adhesive).
- 3. A second lapshear was mated to the first with an overlap area of 0.5 in².
- 4. The mated assembly was clamped with two clamps that exerted a clamping force of approximately 20 lb.
- 5. The mated assembly was allowed to moisture cure for one week prior to conditioning and testing.

Hot Melt Products

(Loctite[®] 7804[™] and 1942[™] Hysol[®] Hot Melt Adhesives)

- 1. The adhesive was heated to its dispense temperature in the appropriate hot melt dispenser.
- 2. Adhesive was applied in an even film to the end of one lapshear.
- 3. A second lapshear was mated to the first with an overlap area of 0.5 in².
- 4. The mated assembly was clamped with two clamps that exerted a clamping force of approximately 20 lb.
- 5. The assemblies were left at ambient conditions for one week prior to conditioning and testing.

Index of Trade Names and Acronyms

Trade Name/Acronym	Elastomer Type	Manufacturer/Comment	Page
ACM	Polyacrylate Rubber	Acronym for Elastomer	46
Afpol	Styrene-Butadiene Rubber	Cal Polymers	60
Alcryn	Melt Processible Rubber	DuPont	36
Baypren	Polychloroprene	Bayer	40
BIIR	Halogenated Butyl Rubber	Acronym for Elastomer	33
Blensil	Silicone	General Electric Silicones	58
Breon	Nitrile Rubber	B.P. Chemicals	42
Buna	Styrene-Butadiene Rubber	Bayer	60
Butaclor	Polychloroprene	Enichem Elastomers	40
C-Flex	Styrenic TPE	Concept	62
Chemigum	Nitrile Rubber	Goodyear	42
CIIR	Halogenated Butyl Rubber	Acronym for Elastomer	32
СО	Epichlorohydrin Rubber	Acronym for Elastomer	20
Compo Crepe	Natural Rubber	International Type of NR	38
Copeflex	Styrene-Butadiene Rubber	Coperbo	60
Coperflex	Styrenic TPE	Coperbo	62
CR	Polychloroprene	Acronym for Elastomer	40
CSM	Chlorosulfonated Polyethylene	Acronym for Elastomer	16
Dai-el	Fluorocarbon Rubbers	Daikin	28
Duradene	Styrene-Butadiene Rubber	Firestone	60
Dynaflex	Styrenic TPE	GLS Corporation	62
Ecdel	Copolyester TPE	Eastman	18
ECO	Epichlorohydrin Rubber	Acronym for Elastomer	20
EEA	Ethylene Acrylic Rubber	Acronym for Elastomer	22
Elastosil	Silicone	Wacker Chemical Corporation	58
Elvax	Etylene-Vinyl Acetate	DuPont	26
Engage	Polyolefin	DuPont Dow Elastomers	50
EPDM	Ethylene Propylene Rubber	Acronym for Elastomer	24
EPM	Ethylene Propylene Rubber	Acronym for Elastomer	24
Epsyn	Ethylene Propylene Rubber	Copolymer Rubber Co.	22
Escorene	Etylene-Vinyl Acetate	Exxon Chemical	26
Estate Brown Crepe	Natural Rubber	International Type of NR	38
Europrene SOL	Styrenic TPE	Enichem	62
Europrene	Styrene-Butadiene Rubber	Enichem	60
Europrene	Polyacrylate Rubber	Enichem Elastomers America	46
EVA	Ethylene Vinyl Acetate	Acronym for Elastomer	26
Evazote	Ethylene Vinyl Acetate	B.P. Chemicals	26
Exxon Bromobutyl	Halogenated Butyl Rubber	Exxon Chemical	32
Exxon Butyl	Butyl Rubber	Exxon Chemical	14
Exxon Chlorobutyl	Halogenated Butyl Rubber	Exxon Chemical	32
FE	Fluorosilicone Rubber	Shinetsu Chemical	30
FKM	Fluorocarbon Rubber	Acronym for Elastomer	28
Flat Bark Crepe	Natural Rubber	International Type of NR	38
Fluorel	Fluorocarbon Rubber	3M	28

Trade Name/Acronym	Elastomer Type	Manufacturer/Comment	Page
FSE	Fluorosilicone Rubber	General Electric	30
FVMQ	Fluorosilicone Rubber	Acronym for Elastomer	30
GCO	Epichlorohydrin Rubber	Acronym for Elastomer	20
GECO	Epichlorohydrin Rubber	Acronym for Elastomer	20
Geolast	Thermoplastic Vulcanizate	Advanced Elastomer Systems	64
GPO	Poly(propylene oxide) Rubber	Acronym for Elastomer	52
Hercuprene	Polyolefin	J-Von	50
H-NBR	Hydrogenated Nitrile Rubber	Acronym for Elastomer	34
HSN	Hydrogenated Nitrile Rubber	Acronym for Elastomer	34
Humex	Nitrile Rubber	Huels Mexicanos	42
Hycar	Polyacrylate Rubber	B.F. Goodrich	46
Hydrin	Epichlorohydrin Rubber	Zeon	20
Hypalon	Chlorosulfonated Polyethylene	DuPont	16
НуТетр	Polyacrylate Rubber	Zeon Chemical	46
Hytrel	Copolyester TPE	DuPont	18
IIR	Butyl Rubber	Acronym for Elastomer	14
IR	Polyisoprene	Acronym for Elastomer	48
Isolene	Polyisoprene	Hardman	48
Kalrez	Fluorocarbon Rubber	DuPont	28
Kraton	Styrene-Butadiene Rubber	Shell Chemical	60
Kraton	Styrenic TPE	Shell Chemical	62
K-Resin	Styrenic TPE	Phillips	62
Krynac	Nitrile Rubber	Polysar International	42
Lomod	Copolyester TPE	General Electric	18
LP	Polysulfide Rubber	Morton Thiokol	54
LS	Fluorosilicone Rubbers	Dow Corning	30
MPR	Melt Processible Rubber	Acronym for Elastomer	36
MQ	Silicone Rubber	Acronym for Elastomer	58
Natsyn	Polyisoprene	Goodyear	48
NBR	Nitrile Rubber	Acronym for Elastomer	42
Neoprene	Polychloroprene	DuPont	40
Nipol	Polyisoprene	Goldsmith & Eggleton	48
Nipol	Nitrile Rubber	Nippon Zeon	42
Nordel	Ethylene Propylene Rubber	DuPont	24
NR	Natural Rubber	Acronym for Elastomer	38
Nysen	Nitrile Rubber	Copolymer Rubber	42
Pale Crepe	Natural Rubber	International Type of NR	38
Parel	Poly(propylene oxide) Rubber	Zeon Chemical	52
Pebax	Polyether Block Amide	Arkema Inc.	44
Perbunan	Nitrile Rubber	Mobay	42
Plioflex	Styrene-Butadiene Rubber	Goodyear	60
Pliolite	Styrene-Butadiene Rubber	Goodyear	60
PMQ	Silicone Rubber	Acronym for Elastomer	58
POE	Polyoletin	Acronym for Elastomer	50
Polysar EPDM	Ethylene Propylene Rubber	Bayer	24
Polysar Bromobutyl	Halogenated Butyl Rubber	Bayer	32
Polysar Butyl	Butyl Rubber	Bayer	14

Trade Name/Acronym	Elastomer Type	Manufacturer/Comment	Page
Polysar Chlorobutyl	Halogenated Butyl Rubber	Bayer	32
Pure Smoked Blanket Crepe	Natural Rubber	International Type of NR	38
PVMQ	Silicone Rubber	Acronym for Elastomer	58
Ribbed Smoked Sheet	Natural Rubber	International Type of NR	38
Rimflex	Styrenic TPE	Synthetic Rubber Technologies	62
Riteflex	Copolyester TPE	Hoescht Celanese	18
Royalene	Ethylene Propylene Rubber	Uniroyal Chemical	24
Royaltherm	Silicone-Modified EPDM	Uniroyal Chemical	56
Santoprene	Thermoplastic Vulcanizate	Advanced Elastomer Systems	64
Sarlink	Polyolefin	DSM Thermoplastic	50
SBR	Styrene-Butadiene Rubber	Acronym for Elastomer	60
S-B-S	Styrenic TPE	Acronym for Elastomer	62
S-EB-S	Styrenic TPE	Acronym for Elastomer	62
Silastic	Silicone	Dow Corning STI	58
S-I-S	Styrenic TPE	Acronym for Elastomer	62
Ski-3	Polyisoprene	Alcan	48
Solprene	Styrene-Butadiene Rubber	Housmex	60
Solprene	Styrenic TPE	Housmex	62
Stereon	Styrene-Butadiene Rubber	Firestone	60
Synthetic Natural Rubber	Polyisoprene	Common Name for IR	48
Tecnoflon	Fluorocarbon Rubber	Ausimont	28
Therban	Hydrogenated Nitrile Rubber	Bayer	34
Thick Blanket Crepe	Natural Rubber	International Type of NR	38
Thin Brown Crepe	Natural Rubber	International Type of NR	38
Thiokol	Polysulfide Rubber	Morton Thiokol	54
TPV	Thermoplastic Vulcanizate	Acronym for Elastomer	64
Ultrathene	Ethylene-Vinyl Acetate	Quantum Chemicals	26
Vamac	Ethylene Acrylic Rubber	DuPont	22
Vistalon	Ethylene Propylene Rubber	Exxon Chemical	24
Viton	Fluorocarbon Rubbers	DuPont	28
VMQ	Silicone Rubber	Acronym for Elastomer	58
XNBR	Nitrile Rubber	Acronym for Elastomer	42
Zetpol	Hydrogenated Nitrile Rubber	Zeon Chemical	34

The trade names mentioned above are the property of the manufacturing companies listed.

Acknowledgements

This design guide would not have been possible without the expertise, advice and material samples graciously provided by the companies listed below. Henkel Corporation would like to take this opportunity to thank them for their invaluable assistance in developing this resource.

Advanced Elastomer Systems

Wayne Buchheim Senior Marketing Technical Service Specialist

Akron Rubber Development Laboratory, Inc.

Krishna C. Baranwal, Ph.D. Executive Vice President, Technical Robert May Manager Compound Development Mixing and Processing Robert Samples Chief Executive Officer Malcolm Wilborn Vice President, Business Development Services

Bose Corporation

Robert Lituri Corporate Chemist

Florida State University

Joe Deforte Mechanical Engineer

R. T. Vanderbilt Company

Joseph DeMello Sales Representative

Disclaimer

The information contained herein is intended to be used solely as an indicator of the bondability of the evaluated elastomers. The information is believed to be accurate, and is well suited for comparative analysis; however, the testing was performed using a limited number of adhesive lots, elastomer lots, and replicates. Consequently, this makes the information contained herein inappropriate for specification purposes.

All polymeric materials have the potential for swelling or stress cracking when exposed to uncured adhesive depending on the exposure time, part geometry, stresses, and composition variables. Consequently, it is important that the end user evaluate the suitability of the adhesive in their process to insure that the adhesive does not detrimentally affect the performance of the plastic or elastomer.

Henkel cannot assume responsibility for the results obtained by others over whose methods we have no control. It is the user's responsibility to determine suitability for the user's purpose of any production method mentioned herein and to adopt such precautions as may be advisable for the protection of property and of persons against any hazards that may be involved in the handling and use thereof.

In light of the foregoing, **Henkel Corporation** specifically disclaims all warranties of merchantability or fitness for a particular purpose arising from sale or use of Henkel Corporation's products. Henkel Corporation specifically disclaims any liability for consequential or incidental damages of any kind, including lost profits. The discussion herein of various process or compositions is not to be interpreted as representation that they are free from domination of patents owned by others or as a license under any Henkel Corporation patents which may cover such processes, or compositions. We recommend that each prospective user test the proposed application in its manufacturing process, using this data as a guide. This product may be covered by one or more United States or foreign patents or patent applications.

For more information, please call 1-800-LOCTITE (562-8483) in the U.S.; 1-800-263-5043 in Canada; 01-800-901-8100 in Mexico

Henkel Corporation Industry and Maintenance 1001 Trout Brook Crossing, Rocky Hill, CT 06067 U.S.A. • 800-562-8483 • www.henkel.us • www.loctite.com

Loctite, Depend, Fixmaster, Flashcure, Prism, PST, Speedbonder Super Bonder, Superflex, 222MS, 242, 262, 290, 330, 334, 366, 382, 401, 403, 406, 409, 410, 411, 414, 420, 422, 480, 496, 609, 635, 675, 640, 770, 793, 1942, 3030, 3105, 3106, 3631, 4011, 4203, 4204, 4211, 4305, 4307, 4471, 4851, 4861, 5140, 5699, 5900, 7701, 7804, and E-00CL, E-20HP, E-21HP, E-30CL, E-31CL, E-40FL, E-90FL, E-60HP, E-214HP, U-04FL, H3000, and H4500, are trademarks of Henkel Corporation, U.S.A.

Karo is a registered trademark of ACH. Hershey is a registered trademark of Hershey Foods Corporation. © Copyright 2005. Henkel Corporation. All rights reserved. 2696/LT-2662A 2/05